视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001 知道1 知道21 知道41 知道61 知道81 知道101 知道121 知道141 知道161 知道181 知道201 知道221 知道241 知道261 知道281
问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501
系数矩阵与增广矩阵的秩如何判断
2024-07-26 22:19:39 责编:小OO
文档

在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目

增广矩阵通常用于判断矩阵的解的情况:

 

时,方程组无解;

 

时,方程组有唯一解;

 

时,方程组无穷解;

 

不可能,因为增广矩阵的秩大于等于系数矩阵的秩。

扩展资料:

方程组的解与矩阵(增广、系数)秩的关系:

只有当系数矩阵和增广矩阵的秩相等时方程组才有解.且对应齐次线性方程组的基础解系所含解的个数为n-r(系数矩阵).具体总结如下:设A为系数矩阵,(A,b)为增广矩阵,

秩(A)<秩(A b) 方程组无解;

r(A)=r(A b)=n,方程组有唯一解;

r(A)=r(A b)<n,方程组无穷解。

参考资料来源:百度百科-秩 (线性代数术语)

下载本文
显示全文
专题