(2)根据“复合函数求导公式”可知,“y对x的导数,等于y对u的导数与u对x的导数的乘积”。【例】求y=sin(2x)的导数。解:y=sin(2x)可看成y=sinu与u=2x的复合函数。因为(sinu)'=cosu,(2x)'=2,所以,[sin(...
导数求导公式运算法则如下:y=c(c为常数)y'=0;y=x^n,y'=nx^(n-1);y=a^x,y'=a^xlna;y=e^x,y'=e^x;y=logax,y'=logae/x;y=lnx,y'=1/x;y=sinx,y'=cosx;y=cosx,y'=-sinx;y=tan...
运算法则是:加(减)法则,[f(x)+g(x)]'=f(x)'+g(x)';乘法法则,[f(x)*g(x)]'=f(x)'*g(x)+g(x)'*f(x);除法法则,[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2。若某...
导数的基本公式运算法则如下:导数公式:1.y=c(c为常数)y'=02.y=x^ny'=nx"(n-1)3.y=a^xy'=axlnay=e^xy'=e^x4.y=logaxy'=logae/xy=lnxy'=1/x5.y=sinxy'=cosx6.y=cosx...
导数的四则运算法则公式如下所示:加(减)法则:[f(x)+g(x)]'=f(x)'+g(x)'。乘法法则:[f(x)*g(x)]'=f(x)'*g(x)+g(x)'*f(x)。除法法则:[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)...
导数公式及运算法则公式:y=c(c为常数)y'=0、y=x^ny'=nx^(n-1);运算法则:加(减)法则:[f(x)+g(x)]'=f(x)'+g(x)'。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果...
除法法则:[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的...
导数的基本公式:y=c(c为常数)y'=0、y=x^ny'=nx^(n-1)。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的...
导数的四则运算法则公式:(u+v)'=u'+v';(u-v)'=u'-v';(uv)'=u'v+uv';(u/v)'=(u'v-uv')/v^2。扩展资料导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化...
导函数公式:y=c(c为常数),y′=0;运算法则:加(减)法则:[f(x)+g(x)]′=f(x)′+g(x)′。如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f(x)的导函数,简称导数,...