数列 错位相减法的通常解法 高分!!考试复习用
发布网友
发布时间:2022-05-13 16:44
我来回答
共3个回答
热心网友
时间:2023-10-16 16:27
形如An=BnCn,其中{Bn}为等差数列,{Cn}为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比q,即q·Sn;然后错开一位,两个式子相减。这种数列求和方法叫做错位相减法。
热心网友
时间:2023-10-16 16:27
例如,等比数列:﹛an﹜
a1=3,q=2,求Sn.
Sn=3+3×2+3×2²+3×2³+........+3×2^(n-1),①
qSn=2Sn=3×2+3×2²+3×2³+........+ 3×2^n +3×2^(n+1),②
∴ ②-① qSn-Sn=3×2^(n+1)-3,
∴ (q-1)Sn=3×2^(n+1)-3,
我们注意到②-①的过程中,有两队人马自相残杀了n-1组。
这就是“错位相减”。然后,我们再分情况q=1,与q≠1来讨论。就求出了前n项和公式。追问分情况的q呢?
追答q=1时,这个等比数列就是“常数列”3,3,3,3,,,,,,,,3.
q≠1时,把q-1除过去,就得到了Sn公式(显然,分母总不能为0吧)。
热心网友
时间:2023-10-16 16:28
错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。
形如An=BnCn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可。
例如,求和Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0)
当x=1时,Sn=1+3+5+…+(2n-1)=n^2;
当x不等于1时,Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1);
∴xSn=x+3x²+5x³+7x^4+…+(2n-1)*x^n;
两式相减得(1-x)Sn=1+2x[1+x+x²+x³+…+x^(n-2)]-(2n-1)*x^n;
化简得Sn=(2n-1)*x^(n+1)-(2n+1)*x^n+(1+x)/(1-x)^2
Sn= 1/2+1/4+1/8+....+1/2^n
两边同时乘以1/2
1/2Sn= 1/4+1/8+....+1/2^n+1/2^(n+1)(注意跟原式的位置的不同,这样写看的更清楚些)
两式相减
1/2Sn=1/2-1/2^(n+1)
Sn=1-1/2^n
错位相减法是求和的一种解题方法。在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用。这是例子(格式问题,在a后面的数字和n都是指数形式):
S=a+2a2+3a3+……+(n-2)an-2+(n-1)an-1+nan (1)
在(1)的左右两边同时乘上a。 得到等式(2)如下:
aS= a2+2a3+3a4+……+(n-2)an-1+(n-1)an+nan+1 (2)
用(1)—(2),得到等式(3)如下:
(1-a)S=a+(2-1)a2+(3-2)a3+……+(n-n+1)an-nan+1 (3)
(1-a)S=a+a2+a3+……+an-1+an-nan+1
S=a+a2+a3+……+an-1+an用这个的求和公式。
(1-a)S=a+a2+a3+……+an-1+an-nan+1
最后在等式两边同时除以(1-a),就可以得到S的通用公式了。
例子:求和Sn=3x+5x²+7x³+……..+(2n-1)·x的n-1次方(x不等于0)
解:当x=1时,Sn=1+3+5+…..+(2n-1)=n²;
当x不等于1时,Sn=3x+5x²+7x³;+……..+(2n-1)·x的n-1次方
所以xSn=x+3x²+5x³+7x四次方……..+(2n-1)·x的n次方
所以两式相减的(1-x)Sn=1+2x(1+x+x²;+x³;+。。。。。+x的n-2次方)-(2n-1)·x的n次方。
化简得:Sn=(2n-1)·x的n+1次方 -(2n+1)·x的n次方+(1+x)/(1-x)平方
Cn=(2n+1)*2^n
Sn=3*2+5*4+7*8+...+(2n+1)*2^n
2Sn= 3*4+5*8+7*16+...+(2n-1)*2^n+(2n+1)*2^(n+1)
两式相减得
-Sn=6+2*4+2*8+2*16+...+2*2^n-(2n+1)*2^(n+1)
=6+2*(4+8+16+...+2^n)-(2n+1)*2^(n+1)
=6+2^(n+2)-8-(2n+1)*2^(n+1) (等比数列求和)
=(1-2n)*2^(n+1)-2
所以Sn=(2n-1)*2^(n+1)+2
错位相减法
这个在求等比数列求和公式时就用了
Sn= 1/2+1/4+1/8+....+1/2^n
两边同时乘以1/2
1/2Sn= 1/4+1/8+....+1/2^n+1/2^(n+1)(注意根原式的位置的不同,这样写看的更清楚些)
两式相减
1/2Sn=1/2-1/2^(n+1)
Sn=1-1/2^n