发布网友 发布时间:2022-04-21 23:05
共1个回答
热心网友 时间:2023-06-24 09:07
高中数学必修二第四章的最后的内容。原因有三:
一、“空间直角坐标系”的内容为以后选修中用空间向量解决空间中的平行、垂直以及空间中的夹角与距离问题打基础,做好准备。
二、必修2第三、四章是平面解析几何的基础内容,本节“空间直角坐标系”的内容是空间解析几何的基础,与平面解析几何的内容共同体现了“用代数方法解决几何问题”的解析几何思想。
三、本套教材从整体上体现了“螺旋式上升”的思想,本节内容安排“空间直角坐标系”,为以后的学习做铺垫,正是很好地体现了这一思想。
空间点的直角坐标
取定空间直角坐标系O-xyz后,就可以建立空间的点与一个有序数组之间的一一对应关系。
设点M为空间的一点,过点M分别作垂直于x轴、y轴和z轴的平面。设三个平面与x轴、y轴和z轴的交点依次为P、Q、R,点P、Q、R分别称为点M在x轴、y轴和z轴上的投影。又设点P、Q、R在x轴、y轴和z轴上的坐标依次为x、y、z,于是点M确定了一个有序数组x,y,z。
反之,如果给定一个有序数组x,y,z,可以在x轴上取坐标为x的点P,在y轴上取坐标为y的点Q,在z轴上取坐标为z的点R,然后点P、Q、R分别作垂直于x轴、y轴和z轴的三个平面,它们相交于空间的一点M,点M就是由有序数组x,y,z所确定的点。
这样一来,空间的点M与有序数组x,y,z之间就建立了一一对应的关系。把有序数组x,y,z称为点M的坐标,记作M(x,y,z),其中x称为横坐标、y称为纵坐标、z称为竖坐标。