发布网友 发布时间:2022-04-29 17:19
共1个回答
热心网友 时间:2022-07-12 22:16
benford本福特定律,也称为本福德法则,说明一堆从实际生活得出的数据中,以1为首位数字的数的出现机率约为总数的三成,接近期望值1/9的3倍。
本福特定律,也称为本福特法则,说明一堆从实际生活得出的数据中,以1为首位数字的数的出现概率约为总数的三成,接近直觉得出之期望值1/9的3倍。推广来说,越大的数,以它为首几位的数出现的概率就越低。它可用于检查各种数据是否有造假。
相关如下
一组平均增长的数据开始时,增长得较慢,由最初的数字a增长到另一个数字 a+1起首的数的时间,必然比a+1起首的数增长到a+2,需要更多时间,所以出现率就更高了。
从数数目来说,顺序从1开始数,1,2,3,...,9,从这点终结的话,所有数起首的机会似乎相同,但9之后的两位数10至19,以1起首的数又大大抛离了其他数了。而下一堆9起首的数出现之前,必然会经过一堆以2,3,4,...,8起首的数。若果这样数法有个终结点,以1起首的数的出现率一般都比9大。