问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

初二数学题!快!

发布网友 发布时间:2022-04-29 16:02

我来回答

4个回答

热心网友 时间:2023-10-17 18:57

如图1所示,在平面直角坐标系中,点的坐标为A(4,0),点P的直线y = XM,AP = OP = 4,则m的值是多少?

2图,已知点的坐标:(1,0),B点的直线为y =-X,B点时最短的线段AB的坐标。

3,如图所示,在直角坐标系中,的矩形OABC顶点B是坐标(15,6),直线y = 1/3x + b是完全相同的矩形OABC分成相等的区域。两部分组成,b的值。

4,如图所示,在平面直角坐标系中,直线y = 2 -6 x轴,y轴分别相交于点A,B上的C点x轴,如果△ABC是一个等腰三角形,找到的点的坐标C.

5,在平面直角坐标系,它是已知的,(1,4),B( 3,1),P是一个坐标轴(1)点P的坐标时,AP + BP采取的最低值,最低值是多少?当P,AP-BP的最大值的坐标的数目的最大值? p> 6,图中,图像的已知函数图像的比例函数交叉的x轴在第二象限中的点A,点B(-6,0),△AOB的区域15,并AB = AO,求正比例函数和函数的解析式。 /> />已知的图像是一个函数,通过点(2,20),与两轴所包围的区域的三角形是等于1,找到一个函数表达式。

8,具有正比例函数Y = K1X的图像与函数Y = K2X-9图像相交于点P(3,-6)

寻求K1,K2值

一次函数为y = K2X 9是图象及x轴的交叉点A处求点的坐标甲/> 9,正方形ABCD的边长为4,这个广场被放置在平面直角坐标系,使AB在x-轴的坐标点A(-1,0)上的负半/>(1)通过点C的直线为y =-4-16与x轴相交于点E,寻求四边形AECD的面积; >(2)如直线L经过点E和正方形ABCD被分为两部分的面积相等,求直线L的解析表达式。 10,在平面直角坐标系中,函数为y = KX + b的(二<0)的图像,分别与x轴,y轴轴和直线x = 4时相交于甲,B,C的直线所述= 4,x轴相交的点D,四边形OBCD?10的面积,如果横坐标是-1 / 2,找到该函数的关系<br < / 11在平面直角坐标系中,通过B点(-3,4)的图像的功能,和在y轴相交的点A,OA = OB:求此时间函数的解析<br

12,如图所示,A,B,分别位于在原点处的点的x轴的左,右两侧,在第一象限的点P(2米),线性PA存款y轴在C点(0,2),直线PB存款y轴于点D,SAOP = 6。

求:(1))(COP面积

(2)求点的坐标和m的值;

(3)如果防喷= SDOP,直线BD解析公式

13,一次函数y = - X + 1的图像与x轴,y轴分别相交于点A,B,AB在第一象限内边的边缘△ABC

(1)需求面积?△ABC和C点的坐标;

(2)如果在第二象限(A),P点的猜测审判的四边形ABPO该地区。

(3)中的x轴,作为一个等腰三角形的点M,△MAB存在,如果有,请写的点M的坐标,如果有,请说明理由

14,已知比例函数y = K1X的和线性函数y = K2X + b的图像,如图所示它们的相交点A(-3,4),和OB = OA。 BR />(1)寻求正比例函数的函数解析式;

(2)求三角形AOB的面积和周长;

(3)P点在平面的存在直角坐标系,P,O,A,B,梯形的四个顶点?如果有,请写P的坐标,如果有,请解释原因。
15已知的时间函数y = 2的图像与在点A处的x轴,y轴交于点

(1)求∠曹度; />(2)直线y = X +2沿x轴锅离开两个单位,尝试找到的解析表达式泛直;

(3)直接成比例的函数为y =的图象KX(十一≠0)和y = 2获得的图像存放在B点,∠ABO = 30°,求:AB长和B点的坐标。

16,函数y = 2的图像与x轴,y轴分别相交于点A,B,AB在第二象限部分边缘△ABC

(1)找到C点的坐标;

(2)在第二象限点M(米,1),使S△ABM = S△ABC,求点M的坐标;

(3)点C(2,0)是否存在直线AB上的点P,使△ACP是一个等腰三角形?如果有,求P的坐标;,如果它不存在,说明理由。

17,公知的比例函数y = K1X的一个线性函数y = K2X + B图像相交于A点(8,6),所述第一功能和与x轴相交于B,OB = 0.6OA,寻找在这两个函数的解析式/> 18已知一次函数Y = X +2图像经过点A(2米)的x轴于点C,求角AOC。

19已知函数y = KX + B图像经过点A(4,3)和一个函数y = X +1平行的图像点B(2米)(1)中的值的线性函数为y = KX + b的图像上

寻求函数表达式和m />(2)上的x轴,一个可移动的点P(X,0)的点A(4,3),B(2米),距离PA和PB分别时,在交叉点P的坐标为PA + PB值最低的数量?回答

点垂直线×45度角的直线距离最短的线路点,因此ABO等腰直角三角形AB = BO = 2每平方根的2倍的AO AO = BO = 2每平方根2

B分别与xy垂直于垂直轴的交点的坐标乙

完成或等腰三角形运动上述共识显示,B点的坐标(0.5,-0.5)

7,一旦解析表达式,函数y = 8倍+4或y =(25/2)×5的线性函数为y = KX + B时,附带的两个坐标轴的交点(-B / K,0),(0,b)条,所以有20 = 2×+ b的|-B / K×宽×1/2 = 1时,该解决方案的k1 = 8,B1 = 4; k2的= 25/2,B2 = -5,因此,一个线性函数的解析式为y = 8个4或y =(25/2)的X 5 /> 8的比例函数和函数,因为已经(3,-6)

因此,这两个函数的图像中的点因此,当X = Y = -6分别代入

K1,= -2 k2的= 1

如果一个函数在x轴相交于A点的纵坐标为0 y = 0的度是x = 9

一个(9,0)

情况下,横坐标= -1 / 2中,垂直轴= 0

= -K / 2 + b的,K = 2b的

横轴= 4中,纵坐标为y = 4k的+ b的=
横坐标点B = 0时,纵坐标为y =乙

Sobcd =( \ 9b的\ + \ B \)* 4/2 = 10

10 \ B \ = 5

\ B \ = 1/2

= 1/2,K = 2b的= 1 Y = X +1 / 2

= -1 / 2,K = -1为y =-X-1/2

\ B \装置的绝对值的b / a>

11?解决方案:让时间解析函数Y = KX + B

∵Y = KX + B通过B点(-3,4),y轴的交叉点A OA = OB

∴{-3K的+ B = 4

{3000 + B = 0

∴{K = -2 / 3

{B = 2

∴这个解析函数Y = -2/3x +2

根据勾股定理得到解决OA = OB = 5,

所以,分为两种情况:

当A(0 ,5),B(-3,4)代Y = KX + B,Y = X / 3 +5,

当A(0,-5),B(-3,4)代= KX + B在y = 3X +5

,做导游PF,垂直y轴于点F做辅助线PE垂直于x轴于点E

(1 )和S三角形COP

谢:在S三角形COP = 1/2 * OC * PF = 1/2 * 2 * 2 = 2

(2)求点A的坐标和值的P

解决方法:要证明三角形CFP全等于三角形COA,

PF / OA = FC / OC代入PF = 2,OC = 2,那么FC * OA = 4 (式1)

因为S三角形AOP = 6,的基础上的面积的公式?的三角形是S = 1/2 * AO * PE = 6,从而获得了AO * PE = 12 (式2)

其特征在于,PE = OC + FC = 2等于AO + FC,所以等式(2)*(2 + FC)= 12(公式)/>(1)和公式( 3)组成的解决方案,AO = 4,FC = 1可以得到

P = FC + OC = 1 + 2 = 3。

因此,获得A点的坐标(-4, 0),点P(2,3)中,p的值为3的坐标。

(3)的S三角形BOP = S三角形DOP,直线BD解决

解决方案:因为的S三角形防喷器= S三角形DOP,有(1/2)* OB * PE =(1/2)* PF * OD,即

(1/2)*(OE + BE)* PE = (1/2)* PF *(作者+ FD),上面得到的值代入/>(1/2)*(2 + BE)* 3 =(1/2)* 2 * (3 + FD)3BE = 2FD。

:FD:DO = PF:OB FD:(3 + FD)= 2(2 +),结果表明,BE =:2.B坐标(4,0 )

BE = 2代入上式3BE = 2FD,FD = 3三维坐标(0,6)

这样你就可以得到一条直线BD解析公式:

Y =( -3 / 2)×+ 6

/> 17,比例函数y = K1X的函数为y = K2X + B图像相交于点A(8,6),所以8K1 = 6 ... ....(1)

8K2 + B = 6 ......(2),但也OA = 10,所以OB = 6,即B点坐标(6,0),所以6K2 + = 0 ......(3)解决方案(1)(2)(3)K1 = 3/4 K2 = 3 = -18

OA =√(8 ^ 2 6 ^ 2 )= 10,OB = 6,B(6,0)中的k1 = 6/8 = 0.75

正比例函数为y = 0.75倍,函数为y = 3倍18

18,函数y = 2的图像经过点(2米),

米= 2 2 = 4,/>与x轴相交于点c,= 0中,x = -2时。

三角形AOC面积:1/2,* | OC | M | = 1/2 * | -2 | * | 4 | = 4平方单位。

19解决方案:两连败平行线的斜率等于

因此,K =,即线性方程为y = X + B通过点(4,3)代入:

B = -1

因此,一个函数表达为:y =-1

通过点(2米),代入:

m = 1时

2)A(4,3),乙(2,1),使得PA + PB最小,P,A,B的直线/> AB的线性方程为如下:/>(γ-1)/(3-1)= (X-2)/(4-2)通过点(x,0)代入式:/>(0-1)/ 2 =(X-2)/ 2 <br x = 1时的
即当点P 1,PA + PB值最低的横坐标。

热心网友 时间:2023-10-17 18:57

已知它会产生增根,所以x有可能为2或-2
当其为-2时,代入化简完的式子里(以为增根是从化简之后才出现的)
得:2(x+2)-2m=3(x-2) 解得m为6
当其为2时,再次代入化简完的式子里
得:2(x+2)+2m=3(x-2) 解得m为-4

所以答案: m为6或-4
望采纳、

热心网友 时间:2023-10-17 18:58

在“会产生增根”的题目类型中,这个题是比较难的。难在最简公分母是x^2-4。
(简单的题目类型是,最简公分母只有一个式子,比如x-2。再往下写就不用讨论)

第1步去分母得:2(x+2)+mx=3(x-2),即(m-1)x=-10
第2步,根据题意“会产生增根”得x=2或-2
第三步讨论。
①m-1=0时,因增根产生了无解,m=1,要舍去;
②m-1≠0时,(m-1)*2=-10,得m=-4;或者
(m-1)*(-2)=-10,得m=6
综上,m=-4或者m=6。

热心网友 时间:2023-10-17 18:58

负4或6
望采纳

热心网友 时间:2023-10-17 18:57

如图1所示,在平面直角坐标系中,点的坐标为A(4,0),点P的直线y = XM,AP = OP = 4,则m的值是多少?

2图,已知点的坐标:(1,0),B点的直线为y =-X,B点时最短的线段AB的坐标。

3,如图所示,在直角坐标系中,的矩形OABC顶点B是坐标(15,6),直线y = 1/3x + b是完全相同的矩形OABC分成相等的区域。两部分组成,b的值。

4,如图所示,在平面直角坐标系中,直线y = 2 -6 x轴,y轴分别相交于点A,B上的C点x轴,如果△ABC是一个等腰三角形,找到的点的坐标C.

5,在平面直角坐标系,它是已知的,(1,4),B( 3,1),P是一个坐标轴(1)点P的坐标时,AP + BP采取的最低值,最低值是多少?当P,AP-BP的最大值的坐标的数目的最大值? p> 6,图中,图像的已知函数图像的比例函数交叉的x轴在第二象限中的点A,点B(-6,0),△AOB的区域15,并AB = AO,求正比例函数和函数的解析式。 /> />已知的图像是一个函数,通过点(2,20),与两轴所包围的区域的三角形是等于1,找到一个函数表达式。

8,具有正比例函数Y = K1X的图像与函数Y = K2X-9图像相交于点P(3,-6)

寻求K1,K2值

一次函数为y = K2X 9是图象及x轴的交叉点A处求点的坐标甲/> 9,正方形ABCD的边长为4,这个广场被放置在平面直角坐标系,使AB在x-轴的坐标点A(-1,0)上的负半/>(1)通过点C的直线为y =-4-16与x轴相交于点E,寻求四边形AECD的面积; >(2)如直线L经过点E和正方形ABCD被分为两部分的面积相等,求直线L的解析表达式。 10,在平面直角坐标系中,函数为y = KX + b的(二<0)的图像,分别与x轴,y轴轴和直线x = 4时相交于甲,B,C的直线所述= 4,x轴相交的点D,四边形OBCD?10的面积,如果横坐标是-1 / 2,找到该函数的关系<br < / 11在平面直角坐标系中,通过B点(-3,4)的图像的功能,和在y轴相交的点A,OA = OB:求此时间函数的解析<br

12,如图所示,A,B,分别位于在原点处的点的x轴的左,右两侧,在第一象限的点P(2米),线性PA存款y轴在C点(0,2),直线PB存款y轴于点D,SAOP = 6。

求:(1))(COP面积

(2)求点的坐标和m的值;

(3)如果防喷= SDOP,直线BD解析公式

13,一次函数y = - X + 1的图像与x轴,y轴分别相交于点A,B,AB在第一象限内边的边缘△ABC

(1)需求面积?△ABC和C点的坐标;

(2)如果在第二象限(A),P点的猜测审判的四边形ABPO该地区。

(3)中的x轴,作为一个等腰三角形的点M,△MAB存在,如果有,请写的点M的坐标,如果有,请说明理由

14,已知比例函数y = K1X的和线性函数y = K2X + b的图像,如图所示它们的相交点A(-3,4),和OB = OA。 BR />(1)寻求正比例函数的函数解析式;

(2)求三角形AOB的面积和周长;

(3)P点在平面的存在直角坐标系,P,O,A,B,梯形的四个顶点?如果有,请写P的坐标,如果有,请解释原因。
15已知的时间函数y = 2的图像与在点A处的x轴,y轴交于点

(1)求∠曹度; />(2)直线y = X +2沿x轴锅离开两个单位,尝试找到的解析表达式泛直;

(3)直接成比例的函数为y =的图象KX(十一≠0)和y = 2获得的图像存放在B点,∠ABO = 30°,求:AB长和B点的坐标。

16,函数y = 2的图像与x轴,y轴分别相交于点A,B,AB在第二象限部分边缘△ABC

(1)找到C点的坐标;

(2)在第二象限点M(米,1),使S△ABM = S△ABC,求点M的坐标;

(3)点C(2,0)是否存在直线AB上的点P,使△ACP是一个等腰三角形?如果有,求P的坐标;,如果它不存在,说明理由。

17,公知的比例函数y = K1X的一个线性函数y = K2X + B图像相交于A点(8,6),所述第一功能和与x轴相交于B,OB = 0.6OA,寻找在这两个函数的解析式/> 18已知一次函数Y = X +2图像经过点A(2米)的x轴于点C,求角AOC。

19已知函数y = KX + B图像经过点A(4,3)和一个函数y = X +1平行的图像点B(2米)(1)中的值的线性函数为y = KX + b的图像上

寻求函数表达式和m />(2)上的x轴,一个可移动的点P(X,0)的点A(4,3),B(2米),距离PA和PB分别时,在交叉点P的坐标为PA + PB值最低的数量?回答

点垂直线×45度角的直线距离最短的线路点,因此ABO等腰直角三角形AB = BO = 2每平方根的2倍的AO AO = BO = 2每平方根2

B分别与xy垂直于垂直轴的交点的坐标乙

完成或等腰三角形运动上述共识显示,B点的坐标(0.5,-0.5)

7,一旦解析表达式,函数y = 8倍+4或y =(25/2)×5的线性函数为y = KX + B时,附带的两个坐标轴的交点(-B / K,0),(0,b)条,所以有20 = 2×+ b的|-B / K×宽×1/2 = 1时,该解决方案的k1 = 8,B1 = 4; k2的= 25/2,B2 = -5,因此,一个线性函数的解析式为y = 8个4或y =(25/2)的X 5 /> 8的比例函数和函数,因为已经(3,-6)

因此,这两个函数的图像中的点因此,当X = Y = -6分别代入

K1,= -2 k2的= 1

如果一个函数在x轴相交于A点的纵坐标为0 y = 0的度是x = 9

一个(9,0)

情况下,横坐标= -1 / 2中,垂直轴= 0

= -K / 2 + b的,K = 2b的

横轴= 4中,纵坐标为y = 4k的+ b的=
横坐标点B = 0时,纵坐标为y =乙

Sobcd =( \ 9b的\ + \ B \)* 4/2 = 10

10 \ B \ = 5

\ B \ = 1/2

= 1/2,K = 2b的= 1 Y = X +1 / 2

= -1 / 2,K = -1为y =-X-1/2

\ B \装置的绝对值的b / a>

11?解决方案:让时间解析函数Y = KX + B

∵Y = KX + B通过B点(-3,4),y轴的交叉点A OA = OB

∴{-3K的+ B = 4

{3000 + B = 0

∴{K = -2 / 3

{B = 2

∴这个解析函数Y = -2/3x +2

根据勾股定理得到解决OA = OB = 5,

所以,分为两种情况:

当A(0 ,5),B(-3,4)代Y = KX + B,Y = X / 3 +5,

当A(0,-5),B(-3,4)代= KX + B在y = 3X +5

,做导游PF,垂直y轴于点F做辅助线PE垂直于x轴于点E

(1 )和S三角形COP

谢:在S三角形COP = 1/2 * OC * PF = 1/2 * 2 * 2 = 2

(2)求点A的坐标和值的P

解决方法:要证明三角形CFP全等于三角形COA,

PF / OA = FC / OC代入PF = 2,OC = 2,那么FC * OA = 4 (式1)

因为S三角形AOP = 6,的基础上的面积的公式?的三角形是S = 1/2 * AO * PE = 6,从而获得了AO * PE = 12 (式2)

其特征在于,PE = OC + FC = 2等于AO + FC,所以等式(2)*(2 + FC)= 12(公式)/>(1)和公式( 3)组成的解决方案,AO = 4,FC = 1可以得到

P = FC + OC = 1 + 2 = 3。

因此,获得A点的坐标(-4, 0),点P(2,3)中,p的值为3的坐标。

(3)的S三角形BOP = S三角形DOP,直线BD解决

解决方案:因为的S三角形防喷器= S三角形DOP,有(1/2)* OB * PE =(1/2)* PF * OD,即

(1/2)*(OE + BE)* PE = (1/2)* PF *(作者+ FD),上面得到的值代入/>(1/2)*(2 + BE)* 3 =(1/2)* 2 * (3 + FD)3BE = 2FD。

:FD:DO = PF:OB FD:(3 + FD)= 2(2 +),结果表明,BE =:2.B坐标(4,0 )

BE = 2代入上式3BE = 2FD,FD = 3三维坐标(0,6)

这样你就可以得到一条直线BD解析公式:

Y =( -3 / 2)×+ 6

/> 17,比例函数y = K1X的函数为y = K2X + B图像相交于点A(8,6),所以8K1 = 6 ... ....(1)

8K2 + B = 6 ......(2),但也OA = 10,所以OB = 6,即B点坐标(6,0),所以6K2 + = 0 ......(3)解决方案(1)(2)(3)K1 = 3/4 K2 = 3 = -18

OA =√(8 ^ 2 6 ^ 2 )= 10,OB = 6,B(6,0)中的k1 = 6/8 = 0.75

正比例函数为y = 0.75倍,函数为y = 3倍18

18,函数y = 2的图像经过点(2米),

米= 2 2 = 4,/>与x轴相交于点c,= 0中,x = -2时。

三角形AOC面积:1/2,* | OC | M | = 1/2 * | -2 | * | 4 | = 4平方单位。

19解决方案:两连败平行线的斜率等于

因此,K =,即线性方程为y = X + B通过点(4,3)代入:

B = -1

因此,一个函数表达为:y =-1

通过点(2米),代入:

m = 1时

2)A(4,3),乙(2,1),使得PA + PB最小,P,A,B的直线/> AB的线性方程为如下:/>(γ-1)/(3-1)= (X-2)/(4-2)通过点(x,0)代入式:/>(0-1)/ 2 =(X-2)/ 2 <br x = 1时的
即当点P 1,PA + PB值最低的横坐标。

热心网友 时间:2023-10-17 18:57

已知它会产生增根,所以x有可能为2或-2
当其为-2时,代入化简完的式子里(以为增根是从化简之后才出现的)
得:2(x+2)-2m=3(x-2) 解得m为6
当其为2时,再次代入化简完的式子里
得:2(x+2)+2m=3(x-2) 解得m为-4

所以答案: m为6或-4
望采纳、

热心网友 时间:2023-10-17 18:58

在“会产生增根”的题目类型中,这个题是比较难的。难在最简公分母是x^2-4。
(简单的题目类型是,最简公分母只有一个式子,比如x-2。再往下写就不用讨论)

第1步去分母得:2(x+2)+mx=3(x-2),即(m-1)x=-10
第2步,根据题意“会产生增根”得x=2或-2
第三步讨论。
①m-1=0时,因增根产生了无解,m=1,要舍去;
②m-1≠0时,(m-1)*2=-10,得m=-4;或者
(m-1)*(-2)=-10,得m=6
综上,m=-4或者m=6。

热心网友 时间:2023-10-17 18:58

负4或6
望采纳

热心网友 时间:2023-10-17 18:57

如图1所示,在平面直角坐标系中,点的坐标为A(4,0),点P的直线y = XM,AP = OP = 4,则m的值是多少?

2图,已知点的坐标:(1,0),B点的直线为y =-X,B点时最短的线段AB的坐标。

3,如图所示,在直角坐标系中,的矩形OABC顶点B是坐标(15,6),直线y = 1/3x + b是完全相同的矩形OABC分成相等的区域。两部分组成,b的值。

4,如图所示,在平面直角坐标系中,直线y = 2 -6 x轴,y轴分别相交于点A,B上的C点x轴,如果△ABC是一个等腰三角形,找到的点的坐标C.

5,在平面直角坐标系,它是已知的,(1,4),B( 3,1),P是一个坐标轴(1)点P的坐标时,AP + BP采取的最低值,最低值是多少?当P,AP-BP的最大值的坐标的数目的最大值? p> 6,图中,图像的已知函数图像的比例函数交叉的x轴在第二象限中的点A,点B(-6,0),△AOB的区域15,并AB = AO,求正比例函数和函数的解析式。 /> />已知的图像是一个函数,通过点(2,20),与两轴所包围的区域的三角形是等于1,找到一个函数表达式。

8,具有正比例函数Y = K1X的图像与函数Y = K2X-9图像相交于点P(3,-6)

寻求K1,K2值

一次函数为y = K2X 9是图象及x轴的交叉点A处求点的坐标甲/> 9,正方形ABCD的边长为4,这个广场被放置在平面直角坐标系,使AB在x-轴的坐标点A(-1,0)上的负半/>(1)通过点C的直线为y =-4-16与x轴相交于点E,寻求四边形AECD的面积; >(2)如直线L经过点E和正方形ABCD被分为两部分的面积相等,求直线L的解析表达式。 10,在平面直角坐标系中,函数为y = KX + b的(二<0)的图像,分别与x轴,y轴轴和直线x = 4时相交于甲,B,C的直线所述= 4,x轴相交的点D,四边形OBCD?10的面积,如果横坐标是-1 / 2,找到该函数的关系<br < / 11在平面直角坐标系中,通过B点(-3,4)的图像的功能,和在y轴相交的点A,OA = OB:求此时间函数的解析<br

12,如图所示,A,B,分别位于在原点处的点的x轴的左,右两侧,在第一象限的点P(2米),线性PA存款y轴在C点(0,2),直线PB存款y轴于点D,SAOP = 6。

求:(1))(COP面积

(2)求点的坐标和m的值;

(3)如果防喷= SDOP,直线BD解析公式

13,一次函数y = - X + 1的图像与x轴,y轴分别相交于点A,B,AB在第一象限内边的边缘△ABC

(1)需求面积?△ABC和C点的坐标;

(2)如果在第二象限(A),P点的猜测审判的四边形ABPO该地区。

(3)中的x轴,作为一个等腰三角形的点M,△MAB存在,如果有,请写的点M的坐标,如果有,请说明理由

14,已知比例函数y = K1X的和线性函数y = K2X + b的图像,如图所示它们的相交点A(-3,4),和OB = OA。 BR />(1)寻求正比例函数的函数解析式;

(2)求三角形AOB的面积和周长;

(3)P点在平面的存在直角坐标系,P,O,A,B,梯形的四个顶点?如果有,请写P的坐标,如果有,请解释原因。
15已知的时间函数y = 2的图像与在点A处的x轴,y轴交于点

(1)求∠曹度; />(2)直线y = X +2沿x轴锅离开两个单位,尝试找到的解析表达式泛直;

(3)直接成比例的函数为y =的图象KX(十一≠0)和y = 2获得的图像存放在B点,∠ABO = 30°,求:AB长和B点的坐标。

16,函数y = 2的图像与x轴,y轴分别相交于点A,B,AB在第二象限部分边缘△ABC

(1)找到C点的坐标;

(2)在第二象限点M(米,1),使S△ABM = S△ABC,求点M的坐标;

(3)点C(2,0)是否存在直线AB上的点P,使△ACP是一个等腰三角形?如果有,求P的坐标;,如果它不存在,说明理由。

17,公知的比例函数y = K1X的一个线性函数y = K2X + B图像相交于A点(8,6),所述第一功能和与x轴相交于B,OB = 0.6OA,寻找在这两个函数的解析式/> 18已知一次函数Y = X +2图像经过点A(2米)的x轴于点C,求角AOC。

19已知函数y = KX + B图像经过点A(4,3)和一个函数y = X +1平行的图像点B(2米)(1)中的值的线性函数为y = KX + b的图像上

寻求函数表达式和m />(2)上的x轴,一个可移动的点P(X,0)的点A(4,3),B(2米),距离PA和PB分别时,在交叉点P的坐标为PA + PB值最低的数量?回答

点垂直线×45度角的直线距离最短的线路点,因此ABO等腰直角三角形AB = BO = 2每平方根的2倍的AO AO = BO = 2每平方根2

B分别与xy垂直于垂直轴的交点的坐标乙

完成或等腰三角形运动上述共识显示,B点的坐标(0.5,-0.5)

7,一旦解析表达式,函数y = 8倍+4或y =(25/2)×5的线性函数为y = KX + B时,附带的两个坐标轴的交点(-B / K,0),(0,b)条,所以有20 = 2×+ b的|-B / K×宽×1/2 = 1时,该解决方案的k1 = 8,B1 = 4; k2的= 25/2,B2 = -5,因此,一个线性函数的解析式为y = 8个4或y =(25/2)的X 5 /> 8的比例函数和函数,因为已经(3,-6)

因此,这两个函数的图像中的点因此,当X = Y = -6分别代入

K1,= -2 k2的= 1

如果一个函数在x轴相交于A点的纵坐标为0 y = 0的度是x = 9

一个(9,0)

情况下,横坐标= -1 / 2中,垂直轴= 0

= -K / 2 + b的,K = 2b的

横轴= 4中,纵坐标为y = 4k的+ b的=
横坐标点B = 0时,纵坐标为y =乙

Sobcd =( \ 9b的\ + \ B \)* 4/2 = 10

10 \ B \ = 5

\ B \ = 1/2

= 1/2,K = 2b的= 1 Y = X +1 / 2

= -1 / 2,K = -1为y =-X-1/2

\ B \装置的绝对值的b / a>

11?解决方案:让时间解析函数Y = KX + B

∵Y = KX + B通过B点(-3,4),y轴的交叉点A OA = OB

∴{-3K的+ B = 4

{3000 + B = 0

∴{K = -2 / 3

{B = 2

∴这个解析函数Y = -2/3x +2

根据勾股定理得到解决OA = OB = 5,

所以,分为两种情况:

当A(0 ,5),B(-3,4)代Y = KX + B,Y = X / 3 +5,

当A(0,-5),B(-3,4)代= KX + B在y = 3X +5

,做导游PF,垂直y轴于点F做辅助线PE垂直于x轴于点E

(1 )和S三角形COP

谢:在S三角形COP = 1/2 * OC * PF = 1/2 * 2 * 2 = 2

(2)求点A的坐标和值的P

解决方法:要证明三角形CFP全等于三角形COA,

PF / OA = FC / OC代入PF = 2,OC = 2,那么FC * OA = 4 (式1)

因为S三角形AOP = 6,的基础上的面积的公式?的三角形是S = 1/2 * AO * PE = 6,从而获得了AO * PE = 12 (式2)

其特征在于,PE = OC + FC = 2等于AO + FC,所以等式(2)*(2 + FC)= 12(公式)/>(1)和公式( 3)组成的解决方案,AO = 4,FC = 1可以得到

P = FC + OC = 1 + 2 = 3。

因此,获得A点的坐标(-4, 0),点P(2,3)中,p的值为3的坐标。

(3)的S三角形BOP = S三角形DOP,直线BD解决

解决方案:因为的S三角形防喷器= S三角形DOP,有(1/2)* OB * PE =(1/2)* PF * OD,即

(1/2)*(OE + BE)* PE = (1/2)* PF *(作者+ FD),上面得到的值代入/>(1/2)*(2 + BE)* 3 =(1/2)* 2 * (3 + FD)3BE = 2FD。

:FD:DO = PF:OB FD:(3 + FD)= 2(2 +),结果表明,BE =:2.B坐标(4,0 )

BE = 2代入上式3BE = 2FD,FD = 3三维坐标(0,6)

这样你就可以得到一条直线BD解析公式:

Y =( -3 / 2)×+ 6

/> 17,比例函数y = K1X的函数为y = K2X + B图像相交于点A(8,6),所以8K1 = 6 ... ....(1)

8K2 + B = 6 ......(2),但也OA = 10,所以OB = 6,即B点坐标(6,0),所以6K2 + = 0 ......(3)解决方案(1)(2)(3)K1 = 3/4 K2 = 3 = -18

OA =√(8 ^ 2 6 ^ 2 )= 10,OB = 6,B(6,0)中的k1 = 6/8 = 0.75

正比例函数为y = 0.75倍,函数为y = 3倍18

18,函数y = 2的图像经过点(2米),

米= 2 2 = 4,/>与x轴相交于点c,= 0中,x = -2时。

三角形AOC面积:1/2,* | OC | M | = 1/2 * | -2 | * | 4 | = 4平方单位。

19解决方案:两连败平行线的斜率等于

因此,K =,即线性方程为y = X + B通过点(4,3)代入:

B = -1

因此,一个函数表达为:y =-1

通过点(2米),代入:

m = 1时

2)A(4,3),乙(2,1),使得PA + PB最小,P,A,B的直线/> AB的线性方程为如下:/>(γ-1)/(3-1)= (X-2)/(4-2)通过点(x,0)代入式:/>(0-1)/ 2 =(X-2)/ 2 <br x = 1时的
即当点P 1,PA + PB值最低的横坐标。

热心网友 时间:2023-10-17 18:57

如图1所示,在平面直角坐标系中,点的坐标为A(4,0),点P的直线y = XM,AP = OP = 4,则m的值是多少?

2图,已知点的坐标:(1,0),B点的直线为y =-X,B点时最短的线段AB的坐标。

3,如图所示,在直角坐标系中,的矩形OABC顶点B是坐标(15,6),直线y = 1/3x + b是完全相同的矩形OABC分成相等的区域。两部分组成,b的值。

4,如图所示,在平面直角坐标系中,直线y = 2 -6 x轴,y轴分别相交于点A,B上的C点x轴,如果△ABC是一个等腰三角形,找到的点的坐标C.

5,在平面直角坐标系,它是已知的,(1,4),B( 3,1),P是一个坐标轴(1)点P的坐标时,AP + BP采取的最低值,最低值是多少?当P,AP-BP的最大值的坐标的数目的最大值? p> 6,图中,图像的已知函数图像的比例函数交叉的x轴在第二象限中的点A,点B(-6,0),△AOB的区域15,并AB = AO,求正比例函数和函数的解析式。 /> />已知的图像是一个函数,通过点(2,20),与两轴所包围的区域的三角形是等于1,找到一个函数表达式。

8,具有正比例函数Y = K1X的图像与函数Y = K2X-9图像相交于点P(3,-6)

寻求K1,K2值

一次函数为y = K2X 9是图象及x轴的交叉点A处求点的坐标甲/> 9,正方形ABCD的边长为4,这个广场被放置在平面直角坐标系,使AB在x-轴的坐标点A(-1,0)上的负半/>(1)通过点C的直线为y =-4-16与x轴相交于点E,寻求四边形AECD的面积; >(2)如直线L经过点E和正方形ABCD被分为两部分的面积相等,求直线L的解析表达式。 10,在平面直角坐标系中,函数为y = KX + b的(二<0)的图像,分别与x轴,y轴轴和直线x = 4时相交于甲,B,C的直线所述= 4,x轴相交的点D,四边形OBCD?10的面积,如果横坐标是-1 / 2,找到该函数的关系<br < / 11在平面直角坐标系中,通过B点(-3,4)的图像的功能,和在y轴相交的点A,OA = OB:求此时间函数的解析<br

12,如图所示,A,B,分别位于在原点处的点的x轴的左,右两侧,在第一象限的点P(2米),线性PA存款y轴在C点(0,2),直线PB存款y轴于点D,SAOP = 6。

求:(1))(COP面积

(2)求点的坐标和m的值;

(3)如果防喷= SDOP,直线BD解析公式

13,一次函数y = - X + 1的图像与x轴,y轴分别相交于点A,B,AB在第一象限内边的边缘△ABC

(1)需求面积?△ABC和C点的坐标;

(2)如果在第二象限(A),P点的猜测审判的四边形ABPO该地区。

(3)中的x轴,作为一个等腰三角形的点M,△MAB存在,如果有,请写的点M的坐标,如果有,请说明理由

14,已知比例函数y = K1X的和线性函数y = K2X + b的图像,如图所示它们的相交点A(-3,4),和OB = OA。 BR />(1)寻求正比例函数的函数解析式;

(2)求三角形AOB的面积和周长;

(3)P点在平面的存在直角坐标系,P,O,A,B,梯形的四个顶点?如果有,请写P的坐标,如果有,请解释原因。
15已知的时间函数y = 2的图像与在点A处的x轴,y轴交于点

(1)求∠曹度; />(2)直线y = X +2沿x轴锅离开两个单位,尝试找到的解析表达式泛直;

(3)直接成比例的函数为y =的图象KX(十一≠0)和y = 2获得的图像存放在B点,∠ABO = 30°,求:AB长和B点的坐标。

16,函数y = 2的图像与x轴,y轴分别相交于点A,B,AB在第二象限部分边缘△ABC

(1)找到C点的坐标;

(2)在第二象限点M(米,1),使S△ABM = S△ABC,求点M的坐标;

(3)点C(2,0)是否存在直线AB上的点P,使△ACP是一个等腰三角形?如果有,求P的坐标;,如果它不存在,说明理由。

17,公知的比例函数y = K1X的一个线性函数y = K2X + B图像相交于A点(8,6),所述第一功能和与x轴相交于B,OB = 0.6OA,寻找在这两个函数的解析式/> 18已知一次函数Y = X +2图像经过点A(2米)的x轴于点C,求角AOC。

19已知函数y = KX + B图像经过点A(4,3)和一个函数y = X +1平行的图像点B(2米)(1)中的值的线性函数为y = KX + b的图像上

寻求函数表达式和m />(2)上的x轴,一个可移动的点P(X,0)的点A(4,3),B(2米),距离PA和PB分别时,在交叉点P的坐标为PA + PB值最低的数量?回答

点垂直线×45度角的直线距离最短的线路点,因此ABO等腰直角三角形AB = BO = 2每平方根的2倍的AO AO = BO = 2每平方根2

B分别与xy垂直于垂直轴的交点的坐标乙

完成或等腰三角形运动上述共识显示,B点的坐标(0.5,-0.5)

7,一旦解析表达式,函数y = 8倍+4或y =(25/2)×5的线性函数为y = KX + B时,附带的两个坐标轴的交点(-B / K,0),(0,b)条,所以有20 = 2×+ b的|-B / K×宽×1/2 = 1时,该解决方案的k1 = 8,B1 = 4; k2的= 25/2,B2 = -5,因此,一个线性函数的解析式为y = 8个4或y =(25/2)的X 5 /> 8的比例函数和函数,因为已经(3,-6)

因此,这两个函数的图像中的点因此,当X = Y = -6分别代入

K1,= -2 k2的= 1

如果一个函数在x轴相交于A点的纵坐标为0 y = 0的度是x = 9

一个(9,0)

情况下,横坐标= -1 / 2中,垂直轴= 0

= -K / 2 + b的,K = 2b的

横轴= 4中,纵坐标为y = 4k的+ b的=
横坐标点B = 0时,纵坐标为y =乙

Sobcd =( \ 9b的\ + \ B \)* 4/2 = 10

10 \ B \ = 5

\ B \ = 1/2

= 1/2,K = 2b的= 1 Y = X +1 / 2

= -1 / 2,K = -1为y =-X-1/2

\ B \装置的绝对值的b / a>

11?解决方案:让时间解析函数Y = KX + B

∵Y = KX + B通过B点(-3,4),y轴的交叉点A OA = OB

∴{-3K的+ B = 4

{3000 + B = 0

∴{K = -2 / 3

{B = 2

∴这个解析函数Y = -2/3x +2

根据勾股定理得到解决OA = OB = 5,

所以,分为两种情况:

当A(0 ,5),B(-3,4)代Y = KX + B,Y = X / 3 +5,

当A(0,-5),B(-3,4)代= KX + B在y = 3X +5

,做导游PF,垂直y轴于点F做辅助线PE垂直于x轴于点E

(1 )和S三角形COP

谢:在S三角形COP = 1/2 * OC * PF = 1/2 * 2 * 2 = 2

(2)求点A的坐标和值的P

解决方法:要证明三角形CFP全等于三角形COA,

PF / OA = FC / OC代入PF = 2,OC = 2,那么FC * OA = 4 (式1)

因为S三角形AOP = 6,的基础上的面积的公式?的三角形是S = 1/2 * AO * PE = 6,从而获得了AO * PE = 12 (式2)

其特征在于,PE = OC + FC = 2等于AO + FC,所以等式(2)*(2 + FC)= 12(公式)/>(1)和公式( 3)组成的解决方案,AO = 4,FC = 1可以得到

P = FC + OC = 1 + 2 = 3。

因此,获得A点的坐标(-4, 0),点P(2,3)中,p的值为3的坐标。

(3)的S三角形BOP = S三角形DOP,直线BD解决

解决方案:因为的S三角形防喷器= S三角形DOP,有(1/2)* OB * PE =(1/2)* PF * OD,即

(1/2)*(OE + BE)* PE = (1/2)* PF *(作者+ FD),上面得到的值代入/>(1/2)*(2 + BE)* 3 =(1/2)* 2 * (3 + FD)3BE = 2FD。

:FD:DO = PF:OB FD:(3 + FD)= 2(2 +),结果表明,BE =:2.B坐标(4,0 )

BE = 2代入上式3BE = 2FD,FD = 3三维坐标(0,6)

这样你就可以得到一条直线BD解析公式:

Y =( -3 / 2)×+ 6

/> 17,比例函数y = K1X的函数为y = K2X + B图像相交于点A(8,6),所以8K1 = 6 ... ....(1)

8K2 + B = 6 ......(2),但也OA = 10,所以OB = 6,即B点坐标(6,0),所以6K2 + = 0 ......(3)解决方案(1)(2)(3)K1 = 3/4 K2 = 3 = -18

OA =√(8 ^ 2 6 ^ 2 )= 10,OB = 6,B(6,0)中的k1 = 6/8 = 0.75

正比例函数为y = 0.75倍,函数为y = 3倍18

18,函数y = 2的图像经过点(2米),

米= 2 2 = 4,/>与x轴相交于点c,= 0中,x = -2时。

三角形AOC面积:1/2,* | OC | M | = 1/2 * | -2 | * | 4 | = 4平方单位。

19解决方案:两连败平行线的斜率等于

因此,K =,即线性方程为y = X + B通过点(4,3)代入:

B = -1

因此,一个函数表达为:y =-1

通过点(2米),代入:

m = 1时

2)A(4,3),乙(2,1),使得PA + PB最小,P,A,B的直线/> AB的线性方程为如下:/>(γ-1)/(3-1)= (X-2)/(4-2)通过点(x,0)代入式:/>(0-1)/ 2 =(X-2)/ 2 <br x = 1时的
即当点P 1,PA + PB值最低的横坐标。

热心网友 时间:2023-10-17 18:57

已知它会产生增根,所以x有可能为2或-2
当其为-2时,代入化简完的式子里(以为增根是从化简之后才出现的)
得:2(x+2)-2m=3(x-2) 解得m为6
当其为2时,再次代入化简完的式子里
得:2(x+2)+2m=3(x-2) 解得m为-4

所以答案: m为6或-4
望采纳、

热心网友 时间:2023-10-17 18:58

在“会产生增根”的题目类型中,这个题是比较难的。难在最简公分母是x^2-4。
(简单的题目类型是,最简公分母只有一个式子,比如x-2。再往下写就不用讨论)

第1步去分母得:2(x+2)+mx=3(x-2),即(m-1)x=-10
第2步,根据题意“会产生增根”得x=2或-2
第三步讨论。
①m-1=0时,因增根产生了无解,m=1,要舍去;
②m-1≠0时,(m-1)*2=-10,得m=-4;或者
(m-1)*(-2)=-10,得m=6
综上,m=-4或者m=6。

热心网友 时间:2023-10-17 18:58

负4或6
望采纳

热心网友 时间:2023-10-17 18:57

已知它会产生增根,所以x有可能为2或-2
当其为-2时,代入化简完的式子里(以为增根是从化简之后才出现的)
得:2(x+2)-2m=3(x-2) 解得m为6
当其为2时,再次代入化简完的式子里
得:2(x+2)+2m=3(x-2) 解得m为-4

所以答案: m为6或-4
望采纳、

热心网友 时间:2023-10-17 18:58

在“会产生增根”的题目类型中,这个题是比较难的。难在最简公分母是x^2-4。
(简单的题目类型是,最简公分母只有一个式子,比如x-2。再往下写就不用讨论)

第1步去分母得:2(x+2)+mx=3(x-2),即(m-1)x=-10
第2步,根据题意“会产生增根”得x=2或-2
第三步讨论。
①m-1=0时,因增根产生了无解,m=1,要舍去;
②m-1≠0时,(m-1)*2=-10,得m=-4;或者
(m-1)*(-2)=-10,得m=6
综上,m=-4或者m=6。

热心网友 时间:2023-10-17 18:58

负4或6
望采纳

热心网友 时间:2023-10-17 18:57

如图1所示,在平面直角坐标系中,点的坐标为A(4,0),点P的直线y = XM,AP = OP = 4,则m的值是多少?

2图,已知点的坐标:(1,0),B点的直线为y =-X,B点时最短的线段AB的坐标。

3,如图所示,在直角坐标系中,的矩形OABC顶点B是坐标(15,6),直线y = 1/3x + b是完全相同的矩形OABC分成相等的区域。两部分组成,b的值。

4,如图所示,在平面直角坐标系中,直线y = 2 -6 x轴,y轴分别相交于点A,B上的C点x轴,如果△ABC是一个等腰三角形,找到的点的坐标C.

5,在平面直角坐标系,它是已知的,(1,4),B( 3,1),P是一个坐标轴(1)点P的坐标时,AP + BP采取的最低值,最低值是多少?当P,AP-BP的最大值的坐标的数目的最大值? p> 6,图中,图像的已知函数图像的比例函数交叉的x轴在第二象限中的点A,点B(-6,0),△AOB的区域15,并AB = AO,求正比例函数和函数的解析式。 /> />已知的图像是一个函数,通过点(2,20),与两轴所包围的区域的三角形是等于1,找到一个函数表达式。

8,具有正比例函数Y = K1X的图像与函数Y = K2X-9图像相交于点P(3,-6)

寻求K1,K2值

一次函数为y = K2X 9是图象及x轴的交叉点A处求点的坐标甲/> 9,正方形ABCD的边长为4,这个广场被放置在平面直角坐标系,使AB在x-轴的坐标点A(-1,0)上的负半/>(1)通过点C的直线为y =-4-16与x轴相交于点E,寻求四边形AECD的面积; >(2)如直线L经过点E和正方形ABCD被分为两部分的面积相等,求直线L的解析表达式。 10,在平面直角坐标系中,函数为y = KX + b的(二<0)的图像,分别与x轴,y轴轴和直线x = 4时相交于甲,B,C的直线所述= 4,x轴相交的点D,四边形OBCD?10的面积,如果横坐标是-1 / 2,找到该函数的关系<br < / 11在平面直角坐标系中,通过B点(-3,4)的图像的功能,和在y轴相交的点A,OA = OB:求此时间函数的解析<br

12,如图所示,A,B,分别位于在原点处的点的x轴的左,右两侧,在第一象限的点P(2米),线性PA存款y轴在C点(0,2),直线PB存款y轴于点D,SAOP = 6。

求:(1))(COP面积

(2)求点的坐标和m的值;

(3)如果防喷= SDOP,直线BD解析公式

13,一次函数y = - X + 1的图像与x轴,y轴分别相交于点A,B,AB在第一象限内边的边缘△ABC

(1)需求面积?△ABC和C点的坐标;

(2)如果在第二象限(A),P点的猜测审判的四边形ABPO该地区。

(3)中的x轴,作为一个等腰三角形的点M,△MAB存在,如果有,请写的点M的坐标,如果有,请说明理由

14,已知比例函数y = K1X的和线性函数y = K2X + b的图像,如图所示它们的相交点A(-3,4),和OB = OA。 BR />(1)寻求正比例函数的函数解析式;

(2)求三角形AOB的面积和周长;

(3)P点在平面的存在直角坐标系,P,O,A,B,梯形的四个顶点?如果有,请写P的坐标,如果有,请解释原因。
15已知的时间函数y = 2的图像与在点A处的x轴,y轴交于点

(1)求∠曹度; />(2)直线y = X +2沿x轴锅离开两个单位,尝试找到的解析表达式泛直;

(3)直接成比例的函数为y =的图象KX(十一≠0)和y = 2获得的图像存放在B点,∠ABO = 30°,求:AB长和B点的坐标。

16,函数y = 2的图像与x轴,y轴分别相交于点A,B,AB在第二象限部分边缘△ABC

(1)找到C点的坐标;

(2)在第二象限点M(米,1),使S△ABM = S△ABC,求点M的坐标;

(3)点C(2,0)是否存在直线AB上的点P,使△ACP是一个等腰三角形?如果有,求P的坐标;,如果它不存在,说明理由。

17,公知的比例函数y = K1X的一个线性函数y = K2X + B图像相交于A点(8,6),所述第一功能和与x轴相交于B,OB = 0.6OA,寻找在这两个函数的解析式/> 18已知一次函数Y = X +2图像经过点A(2米)的x轴于点C,求角AOC。

19已知函数y = KX + B图像经过点A(4,3)和一个函数y = X +1平行的图像点B(2米)(1)中的值的线性函数为y = KX + b的图像上

寻求函数表达式和m />(2)上的x轴,一个可移动的点P(X,0)的点A(4,3),B(2米),距离PA和PB分别时,在交叉点P的坐标为PA + PB值最低的数量?回答

点垂直线×45度角的直线距离最短的线路点,因此ABO等腰直角三角形AB = BO = 2每平方根的2倍的AO AO = BO = 2每平方根2

B分别与xy垂直于垂直轴的交点的坐标乙

完成或等腰三角形运动上述共识显示,B点的坐标(0.5,-0.5)

7,一旦解析表达式,函数y = 8倍+4或y =(25/2)×5的线性函数为y = KX + B时,附带的两个坐标轴的交点(-B / K,0),(0,b)条,所以有20 = 2×+ b的|-B / K×宽×1/2 = 1时,该解决方案的k1 = 8,B1 = 4; k2的= 25/2,B2 = -5,因此,一个线性函数的解析式为y = 8个4或y =(25/2)的X 5 /> 8的比例函数和函数,因为已经(3,-6)

因此,这两个函数的图像中的点因此,当X = Y = -6分别代入

K1,= -2 k2的= 1

如果一个函数在x轴相交于A点的纵坐标为0 y = 0的度是x = 9

一个(9,0)

情况下,横坐标= -1 / 2中,垂直轴= 0

= -K / 2 + b的,K = 2b的

横轴= 4中,纵坐标为y = 4k的+ b的=
横坐标点B = 0时,纵坐标为y =乙

Sobcd =( \ 9b的\ + \ B \)* 4/2 = 10

10 \ B \ = 5

\ B \ = 1/2

= 1/2,K = 2b的= 1 Y = X +1 / 2

= -1 / 2,K = -1为y =-X-1/2

\ B \装置的绝对值的b / a>

11?解决方案:让时间解析函数Y = KX + B

∵Y = KX + B通过B点(-3,4),y轴的交叉点A OA = OB

∴{-3K的+ B = 4

{3000 + B = 0

∴{K = -2 / 3

{B = 2

∴这个解析函数Y = -2/3x +2

根据勾股定理得到解决OA = OB = 5,

所以,分为两种情况:

当A(0 ,5),B(-3,4)代Y = KX + B,Y = X / 3 +5,

当A(0,-5),B(-3,4)代= KX + B在y = 3X +5

,做导游PF,垂直y轴于点F做辅助线PE垂直于x轴于点E

(1 )和S三角形COP

谢:在S三角形COP = 1/2 * OC * PF = 1/2 * 2 * 2 = 2

(2)求点A的坐标和值的P

解决方法:要证明三角形CFP全等于三角形COA,

PF / OA = FC / OC代入PF = 2,OC = 2,那么FC * OA = 4 (式1)

因为S三角形AOP = 6,的基础上的面积的公式?的三角形是S = 1/2 * AO * PE = 6,从而获得了AO * PE = 12 (式2)

其特征在于,PE = OC + FC = 2等于AO + FC,所以等式(2)*(2 + FC)= 12(公式)/>(1)和公式( 3)组成的解决方案,AO = 4,FC = 1可以得到

P = FC + OC = 1 + 2 = 3。

因此,获得A点的坐标(-4, 0),点P(2,3)中,p的值为3的坐标。

(3)的S三角形BOP = S三角形DOP,直线BD解决

解决方案:因为的S三角形防喷器= S三角形DOP,有(1/2)* OB * PE =(1/2)* PF * OD,即

(1/2)*(OE + BE)* PE = (1/2)* PF *(作者+ FD),上面得到的值代入/>(1/2)*(2 + BE)* 3 =(1/2)* 2 * (3 + FD)3BE = 2FD。

:FD:DO = PF:OB FD:(3 + FD)= 2(2 +),结果表明,BE =:2.B坐标(4,0 )

BE = 2代入上式3BE = 2FD,FD = 3三维坐标(0,6)

这样你就可以得到一条直线BD解析公式:

Y =( -3 / 2)×+ 6

/> 17,比例函数y = K1X的函数为y = K2X + B图像相交于点A(8,6),所以8K1 = 6 ... ....(1)

8K2 + B = 6 ......(2),但也OA = 10,所以OB = 6,即B点坐标(6,0),所以6K2 + = 0 ......(3)解决方案(1)(2)(3)K1 = 3/4 K2 = 3 = -18

OA =√(8 ^ 2 6 ^ 2 )= 10,OB = 6,B(6,0)中的k1 = 6/8 = 0.75

正比例函数为y = 0.75倍,函数为y = 3倍18

18,函数y = 2的图像经过点(2米),

米= 2 2 = 4,/>与x轴相交于点c,= 0中,x = -2时。

三角形AOC面积:1/2,* | OC | M | = 1/2 * | -2 | * | 4 | = 4平方单位。

19解决方案:两连败平行线的斜率等于

因此,K =,即线性方程为y = X + B通过点(4,3)代入:

B = -1

因此,一个函数表达为:y =-1

通过点(2米),代入:

m = 1时

2)A(4,3),乙(2,1),使得PA + PB最小,P,A,B的直线/> AB的线性方程为如下:/>(γ-1)/(3-1)= (X-2)/(4-2)通过点(x,0)代入式:/>(0-1)/ 2 =(X-2)/ 2 <br x = 1时的
即当点P 1,PA + PB值最低的横坐标。

热心网友 时间:2023-10-17 18:57

已知它会产生增根,所以x有可能为2或-2
当其为-2时,代入化简完的式子里(以为增根是从化简之后才出现的)
得:2(x+2)-2m=3(x-2) 解得m为6
当其为2时,再次代入化简完的式子里
得:2(x+2)+2m=3(x-2) 解得m为-4

所以答案: m为6或-4
望采纳、

热心网友 时间:2023-10-17 18:58

在“会产生增根”的题目类型中,这个题是比较难的。难在最简公分母是x^2-4。
(简单的题目类型是,最简公分母只有一个式子,比如x-2。再往下写就不用讨论)

第1步去分母得:2(x+2)+mx=3(x-2),即(m-1)x=-10
第2步,根据题意“会产生增根”得x=2或-2
第三步讨论。
①m-1=0时,因增根产生了无解,m=1,要舍去;
②m-1≠0时,(m-1)*2=-10,得m=-4;或者
(m-1)*(-2)=-10,得m=6
综上,m=-4或者m=6。

热心网友 时间:2023-10-17 18:58

负4或6
望采纳
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
空气能热水器如何实现零冷水 空气能总是要放很多冷水才有热水,为什么? 这些常见威士忌术语外文要了解~ 雪梨桶和波本桶的区别 都有哪些团购网 哪些团购网好 哪些团购网比较好 团购网站都有什么 有哪些好的团购网站 团购有哪些网 关于初二数学练习题 烙馍凉了怎么二次加热 初二数学题(急!!!~~~) 发面饼凉了,怎么热好吃 初二数学经典题型(含答案) 烙的发面饼凉了怎么热好吃 15道初二数学题 初二数学下册重点题型 初二上半学期数学经典题型及其详细答案!越多越好!谢谢~ 家里都男生,终于迎来了女生,叫什么名字 未成年人支付宝充游戏怎么退款 - 信息提示 寄语孩子美好希望的诗词 支付宝游戏充值怎么退款流程 支付宝游戏充值如何退款 乾隆一生创作41863首诗,并非都是平庸之作吗? 德才兼备的下一句诗 支付宝游戏充值怎么申请退款 结婚十年 诗词 支付宝充值的游戏怎么申请退款 初二数学题 (速求解答) mysql在建表时,如何能保证除了主键以外的某个键值是唯一的? 山南海北的成语接龙 我做烧饼趁热吃挺好吃的,但是凉了饼就特别硬,我想知道加点啥料能让饼凉了不硬 成语接龙 车水马龙-龙马精神-神通广大-大张旗鼓 表里如一- - - - 接四个 不要形声字什么的 如何把多个短视频拼接成长视频 一字开头的成语接龙8000个头 章字开头的成语接龙 愚人节的英文单词是什么?如题 谢谢了 成长视频制作成长视频,请问用什么软件做?怎么做?或者谁可以帮我做,可以给钱!不是ppt哦 那位大哥大姐我想做用以前录制的短视频做成长的,你们说用什么软件好用又简单的呢?绘声绘影我不会用 隘开头成语接龙? 蓬莱市抽化粪池电话?急 大连清理化粪池哪里有,大连抽粪 湖州环卫抽粪,湖州清理化粪池,湖州管道高压清洗,湖州化粪池疏通 芝罘区抽化粪池电话?急 栖霞市抽化粪池电话?急 化粪池满了,请问垫江哪里有抽化粪池的?谢谢! 宾阳县有抽粪的吗? 大连化粪池清掏,大连清理化粪池哪里有,大连