发布网友 发布时间:2022-04-29 14:48
共5个回答
热心网友 时间:2023-10-12 17:26
例子:证明根号2是无理数:
证明:若根号2是有理数,则设它等于m/n(m、n为不为零的整数,m、n互质)
所以 (m/n)^2=根号2 ^2 =2
所以 m^2/n^2=2
所以 m^2=2*n^2
所以 m^2是偶数,设m=2k(k是整数)
所以 m^2=4k^2=2n^2
所以 n^2=2k^2
所以 n是偶数
因为 m、n互质
所以矛盾,即根号2不是有理数,它是无理数。
扩展资料:
无理数的定义:
在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。当两个线段的长度比是无理数时,线段也被描述为不可比较的,这意味着它们不能“测量”,即没有长度(“度量”)。
常见的无理数有:圆周长与其直径的比值,欧拉数e,黄金比例φ等等。
可以看出,无理数在位置数字系统中表示(例如,以十进制数字或任何其他自然基础表示)不会终止,也不会重复,即不包含数字的子序列。
例如,数字π的十进制表示从3.141592653589793开始,但没有有限数字的数字可以精确地表示π,也不重复。
必须终止或重复的有理数字的十进制扩展的证据不同于终止或重复的十进制扩展必须是有理数的证据,尽管基本而不冗长,但两种证明都需要一些工作。数学家通常不会把“终止或重复”作为有理数概念的定义。
无理数也可以通过非终止的连续分数来处理。
无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数,如圆周率、根号2等。
而有理数由所有分数,整数组成,总能写成整数、有限小数或无限循环小数,并且总能写成两整数之比,如21/7等。
参考资料来源:百度百科-无理数
热心网友 时间:2023-10-12 17:27
像无理代数数,e,π,zeta(3)这些可以用反证法证明,像e^π,有理数弧度的三角函数值,非0或1的代数数的无理代数数次方等只能通过证明是超越数来间接证明是无理数,而像zeta(5),欧拉常数和π+e,e^e,π^π这种π和e的简单组合现在还不能证明是无理数,实际上现在很难证明不是类似ln2和ln3这种形式的两个超越数的各种简单组合是无理数,所以应该不存在可以证明任何一个无理数是无理数的方法热心网友 时间:2023-10-12 17:27
例子:证明根号2是无理数:热心网友 时间:2023-10-12 17:28
无限不循环的数为无理数。所以只要证明它无限不循环就可以了。热心网友 时间:2023-10-12 17:28
证明一个无理数一般从不能用有理数的表达方式入手.