设z=f(2x-y,ysinx),其中f(u,v)具有连续的二阶偏导数,求?2z?x?y
发布网友
发布时间:2023-10-31 15:05
我来回答
共3个回答
热心网友
时间:2024-12-14 05:37
∵z=f(2x-y,ysinx)
∴
z=
f(2x-y,ysinx)
=f
1′
(2x-y)+f
2'
(ysinx)
=2f
1′+ycosxf
2'
=
(2f
1′+ycosxf
2')
=2
f
1′+cosx
(yf
2')
因为:
f
1′=f
11″
(2x-y)+f
12″
(ysinx)
=-f
11″+sinxf
12″
(yf
2')=f
2'+y
f
2'
=f
2'+y[f
21″
(2x-y)+f
22″
(ysinx)]
=f
2'+y[-f
21″+sinxf
22″]
=f
2'-yf
21″+ysinxf
22″
所以:
=2
f
1′+cosx
(yf
2')
=2(-f
11″+sinxf
12″)+cosx(f
2'-yf
21″+ysinxf
22″)
=-2f
11″+2sinxf
12″+cosxf
2'-ycosf
21″+ysinxcosxf
22″
又因为函数f具有连续二阶导数,所以其二阶混合偏导数相等,即:
f
12″=f
21″
所以:
=-2f
11″+2sinxf
12″+cosxf
2'-ycosf
21″+ysinxcosxf
22″
=-2f
11″+(2sinx-ycosx)f
12″+cosxf
2'+ysinxcosxf
22″
故
的值为:
-2f
11″+(2sinx-ycosx)f
12″+cosxf
2'+ysinxcosxf
22″
热心网友
时间:2024-12-14 05:37
简单计算一下即可答案如图所示
热心网友
时间:2024-12-14 05:37
zx=f1*2+f2
ycosx
=2f1+ycosxf2
zxy=-2f11+2sinxf12+cosxf2+ycosx(-f21+sinxf22)
=-2f11+2sinxf12+cosxf2-ycosxf21+ysinxcosxf22