发布网友 发布时间:2022-04-20 02:25
共1个回答
热心网友 时间:2023-09-09 20:37
一般按质粒的性质和特点进行归类。
根据质粒性质和转移特点,可分为接合型质粒和非接合型质粒,两者区别在于是否带有转移基因。接合型质粒具有在细胞间自我转移的能力,分子量大,每个细胞中质粒为1~3个拷贝。非接合型质粒分子量相对较小,在细胞中呈多拷贝。
按照质粒的复制特点,分为严紧型质粒和松弛型质粒。严紧型质粒复制伴随着染色体复制而进行,拷贝数少。松弛型质粒可在无寄主蛋白质合成的情况下复制。用氯霉素或其它物理因素处理某些松弛型复制的质粒细胞,可使拷贝数扩增到1000~3000个。
按表型效应,一般将大肠杆菌质粒分为致育因子(F因子),抗性因子和大肠杆菌素原因子。致育因子主要特征是接合作用,可通过性纤毛使原来不带致育因子的细菌带上该因子。抗性因子具有许多抗生素和某些重金属抗性特点,作为基因载体时是理想的标记选择。大肠杆菌素原因子编码大肠杆菌素,能特异性地杀死其它肠道细菌。携带该因子的菌株由于质粒本身编码一种对大肠杆菌素有免疫作用的蛋白质,而自身不受其伤害。
按照在共存的同一细菌中排斥同类质粒的能力,可分为相容性质粒和不相容性质粒。两种质粒被吸入同一细菌时,如果它们能一起复制并能共存,则它们是相容的,属于不同的不相容群。若两种质粒不能共存于同一细胞内,那么它们是不相容的,属于不相容群。
结构和功能
质粒一般分为必要区和非必要区。质粒含有某些染色体没有的基因,编码某些功能并非是细菌生存所必需的。
必要区
具有复制和*系统,包括与质粒DNA复制、*、不相容性等有关的基因。
非必要区
携带决定特殊表型的基因,目前已鉴定出质粒所控制的性状超过100种。如对抗菌素、重金属、阳离子、插入剂等抗性,分解芳香族化合物、产生抗菌素和细菌素等代谢能力,对其它生物的致病性和共生现象的控制。
与致病性的关系
质粒普遍存在于植物病原细菌和真菌中,不少病原菌的致病性与质粒及其编码基因控制的性状密切相关。
控制毒性
质粒不仅编码了病原菌产生激素、毒素等致病因子性状,也决定了致病因子尚不清楚的病原菌的致病功能。根癌土壤杆菌Ti质粒能诱发寄主细胞产生畸形的冠瘿瘤。Ti质粒中一段转移DNA(T-DNA)上致癌基因编码了生长素和细胞*素的合成,引起植物细胞激素失调,形成肿瘤。此外Ti质粒还决定肿瘤形态,寄主范围,冠瘿碱合成和利用,以及对农杆菌素K84敏感性的基因(见冠瘿瘤形成机制)。丁香假单胞菌致病变种的一些菌株产生丁香素、菜豆毒素、冠毒素以及烟草毒素,都是由质粒基因控制的。这些毒素引起植物叶片退绿和坏死。对玉米萎蔫欧文氏菌和青枯病假单胞菌进行质粒消除、缺失和治愈,突变体丧失或降低了致病性和毒性。许多病原真菌的致病性与双链RNA(ds RNA)质粒有关。维多利亚长蠕孢含有的沉降系数为145S类病毒颗粒中,具有4种ds RNA,与引起燕麦枯萎病有关。寄生隐丛赤壳(栗疫病菌)某些菌株含有一种控制减毒性状的ds RNA质粒,有毒菌株不含这类ds RNA。在立枯丝核菌中也发现质粒的存在与低毒力有关。
控制无毒性
在一些病原细菌中,控制对相应植物抗病品种无毒性的基因定位于质粒上。无毒基因可能涉及到病菌对特定植物的识别,对致病性和毒性起调节作用。辣椒斑点病黄单胞菌辣椒致病变种某些菌株具有一个45kb大质粒,其中含有一个无毒基因,一个抗铜基因和三个拷贝的插入序列,该无毒基因与辣椒中相应的抗病基因互作,导致了不亲和反应。此外,丁香假单胞菌番茄致病变种和大豆致病变种的无毒基因也是质粒携带的。
生态适应和进化作用
质粒的存在使细菌对环境产生较强的适应能力。一是质粒在群体中的转移,使许多可资利用的基因得以在群体中传播和扩散,同时提高了细菌群体DNA复制的效果;二是质粒编码的性状,如产生细菌素和营养能力,增加了细菌在新生境中的适应和与其它细菌竞争的能力,对抗生素、重金属和紫外线辐射的抗性增加了细菌在不良环境中存活的机会。如玉米萎蔫欧文氏菌的质粒系统,有一套相互适应的基因,使其在周期性替换的小生境中保持稳定的表型。冠瘿土壤杆菌Ti质粒中T-DNA上具有的诱导植物合成冠瘿碱的基因,由于植物本身不能利用冠瘿碱,病菌驱使植物产生,供其作为唯一的氮碳源利用。
质粒基因的复杂性是细菌长期进化的产物。它们与染色体基因的相互作用,以及它们在群体中的传播,对加速宿主的进化具有重要作用。质粒不仅可作为转座因子的载体,引起宿主基因组的各种变化,而且还以转移和起动其它质粒基因和染色体基因,发生新的遗传交换、重组和变异。
应用
在分子植物病理学中,质粒可以在病原菌的致病性、其它有益性状以及分子操作中的载体方面加以研究应用。
致病性研究应用
鉴于病原菌的质粒与致病性的相关性,加强对质粒编码基因的类型,结构,表达和*的研究,可以从分子水平阐明病菌的致病机制。
有益性状研究应用
已利用质粒编码的细菌素产生有益性状,应用在植物病害的生物防治中。如细菌素K84防治桃细菌性冠瘿病已获成功。
载体的应用
在分子操作中,质粒常作为基因的载体。但天然的质粒不一定是理想的载体,必须通过重组和改造来发展质粒载体。理想的质粒载体应该具有自我复制的复制子和高效表达的*系统;具有多种*性核酸内切酶的单一切点,切点最好位于易于检测的表型基因上;赋予宿主细胞易于检测的表型;分子量小,多拷贝;携带外源DNA幅度较宽。根癌土壤杆菌的Ti质粒经过去除T-DNA上的产生肿瘤基因后,作为基因载体广泛应用于植物的基因工程研究中。
致病机制
mechanisms of pathogenicity
李振岐
病原物引起寄主植物发生病变的作用原理。病原物对寄主植物的破坏是多方面的,归纳起来有营养掳夺;物理作用;化学作用和改变寄主生物合成方向等。
营养掠夺
各种病原物在其生长和发育过程中都需要大量的各式各样的营养物,主要从寄主植物的细胞中夺取。因此,植物发病后常常丧失大量养分和水分,表现褪绿、黄化或矮化等症状。丧失营养的程度因病害种类,病害发生早晚,病情轻重不同而异。
物理作用
机械力是植物病原线虫侵袭寄主植物的主要手段,它们不仅用口*寄主植物的组织和细胞,注入有害物质,同时还可用吸器从寄主组织细胞内大量吮吸养分和水分。机械力也是植物病原真菌在开始侵入阶段特别是侵入丝侵入表皮蜡质层时的主要手段。真菌菌丝或细菌细胞及粘多糖堵塞导管所导致的萎蔫,主要是物理作用。
化学作用
化学作用是植物病原物侵染为害寄主的最重要的侵袭手段。病原物侵袭寄主的化学作用主要有:毒素,胞外酶,生长调节物质和多糖类。