问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

python pandas groupby分组后的数据怎么用

发布网友 发布时间:2022-04-20 03:07

我来回答

2个回答

热心网友 时间:2022-04-10 18:17

1、Python内置的None值在对象数组中也可以作为NA。

2、pandas项目中还在不断优化内部细节以更好处理缺失数据,像用户API功能,例如pandas.isnull,去除了许多恼人的细节。

3、过滤掉缺失数据的办法有很多种。你可以通过pandas.isnull或布尔索引的手工方法,但dropna可能会更实用一些。对于一个Series,dropna返回一个仅含非空数据和索引值的Series。

4、而对于DataFrame对象,事情就有点复杂了。你可能希望丢弃全NA或含有NA的行或列。dropna默认丢弃任何含有缺失值的行。

5、可能不想滤除缺失数据(有可能会丢弃跟它有关的其他数据),而是希望通过其他方式填补那些“空洞”。对于大多数情况而言,fillna方法是最主要的函数。通过一个常数调用fillna就会将缺失值替换为那个常数值,若是通过一个字典调用fillna,就可以实现对不同的列填充不同的值。

热心网友 时间:2022-04-10 19:35

pandas提供了一个灵活高效的groupby功能,它使你能以一种自然的方式对数据集进行切片、切块、摘要等操作。根据一个或多个键(可以是函数、数组或DataFrame列名)拆分pandas对象。计算分组摘要统计,如计数、平均值、标准差,或用户自定义函数。对DataFrame的列应用各种各样的函数。应用组内转换或其他运算,如规格化、线性回归、排名或选取子集等。计算透视表或交叉表。执行分位数分析以及其他分组分析。
1、首先来看看下面这个非常简单的表格型数据集(以DataFrame的形式):

123456789101112

>>> import pandas as pd>>> df = pd.DataFrame({'key1':['a', 'a', 'b', 'b', 'a'],... 'key2':['one', 'two', 'one', 'two', 'one'],... 'data1':np.random.randn(5),... 'data2':np.random.randn(5)})>>> df data1 data2 key1 key20 -0.410673 0.519378 a one1 -2.120793 0.199074 a two2 0.642216 -0.143671 b one3 0.975133 -0.592994 b two4 -1.017495 -0.530459 a one

假设你想要按key1进行分组,并计算data1列的平均值,我们可以访问data1,并根据key1调用groupby:

123

>>> grouped = df['data1'].groupby(df['key1'])>>> grouped<pandas.core.groupby.SeriesGroupBy object at 0x04120D70>

变量grouped是一个GroupBy对象,它实际上还没有进行任何计算,只是含有一些有关分组键df['key1']的中间数据而已,然后我们可以调用GroupBy的mean方法来计算分组平均值:

12345

>>> grouped.mean()key1a -1.182987b 0.808674dtype: float64

说明:数据(Series)根据分组键进行了聚合,产生了一个新的Series,其索引为key1列中的唯一值。之所以结果中索引的名称为key1,是因为原始DataFrame的列df['key1']就叫这个名字。
2、如果我们一次传入多个数组,就会得到不同的结果:

12345678

>>> means = df['data1'].groupby([df['key1'], df['key2']]).mean()>>> meanskey1 key2a one -0.714084 two -2.120793b one 0.642216 two 0.975133dtype: float64

通过两个键对数据进行了分组,得到的Series具有一个层次化索引(由唯一的键对组成):

12345

>>> means.unstack()key2 one twokey1 a -0.714084 -2.120793b 0.642216 0.975133

在上面这些示例中,分组键均为Series。实际上,分组键可以是任何长度适当的数组:

12345678

>>> states = np.array(['Ohio', 'California', 'California', 'Ohio', 'Ohio'])>>> years = np.array([2005, 2005, 2006, 2005, 2006])>>> df['data1'].groupby([states, years]).mean()California 2005 -2.120793 2006 0.642216Ohio 2005 0.282230 2006 -1.017495dtype: float64

3、此外,你还可以将列名(可以是字符串、数字或其他Python对象)用作分组将:

123456789101112

>>> df.groupby('key1').mean() data1 data2key1 a -1.182987 0.062665b 0.808674 -0.368333>>> df.groupby(['key1', 'key2']).mean() data1 data2key1 key2 a one -0.714084 -0.005540 two -2.120793 0.199074b one 0.642216 -0.143671 two 0.975133 -0.592994

说明:在执行df.groupby('key1').mean()时,结果中没有key2列。这是因为df['key2']不是数值数据,所以被从结果中排除了。默认情况下,所有数值列都会被聚合,虽然有时可能会被过滤为一个子集。
无论你准备拿groupby做什么,都有可能会用到GroupBy的size方法,它可以返回一个含有分组大小的Series:

1234567

>>> df.groupby(['key1', 'key2']).size()key1 key2a one 2 two 1b one 1 two 1dtype: int64

注意:分组键中的任何缺失值都会被排除在结果之外。
4、对分组进行迭代
GroupBy对象支持迭代,可以产生一组二元元组(由分组名和数据块组成)。看看下面这个简单的数据集:

12345678910111213

>>> for name, group in df.groupby('key1'):... print(name)... print(group)...a data1 data2 key1 key20 -0.410673 0.519378 a one1 -2.120793 0.199074 a two4 -1.017495 -0.530459 a oneb data1 data2 key1 key22 0.642216 -0.143671 b one3 0.975133 -0.592994 b two

对于多重键的情况,元组的第一个元素将会是由键值组成的元组:

1234567891011121314151617

>>> for (k1, k2), group in df.groupby(['key1', 'key2']):... print k1, k2... print group...a one data1 data2 key1 key20 -0.410673 0.519378 a one4 -1.017495 -0.530459 a onea two data1 data2 key1 key21 -2.120793 0.199074 a twob one data1 data2 key1 key22 0.642216 -0.143671 b oneb two data1 data2 key1 key23 0.975133 -0.592994 b two

当然,你可以对这些数据片段做任何操作。有一个你可能会觉得有用的运算:将这些数据片段做成一个字典:

1234567891011121314

>>> pieces = dict(list(df.groupby('key1')))>>> pieces['b'] data1 data2 key1 key22 0.642216 -0.143671 b one3 0.975133 -0.592994 b two>>> df.groupby('key1')<pandas.core.groupby.DataFrameGroupBy object at 0x0413AE30>>>> list(df.groupby('key1'))[('a', data1 data2 key1 key20 -0.410673 0.519378 a one1 -2.120793 0.199074 a two4 -1.017495 -0.530459 a one), ('b', data1 data2 key1 key22 0.642216 -0.143671 b one3 0.975133 -0.592994 b two)]

groupby默认是在axis=0上进行分组的,通过设置也可以在其他任何轴上进行分组。那上面例子中的df来说,我们可以根据dtype对列进行分组:

12345678910111213141516171819

>>> df.dtypesdata1 float64data2 float64key1 objectkey2 objectdtype: object>>> grouped = df.groupby(df.dtypes, axis=1)>>> dict(list(grouped)){dtype('O'): key1 key20 a one1 a two2 b one3 b two4 a one, dtype('float64'): data1 data20 -0.410673 0.5193781 -2.120793 0.1990742 0.642216 -0.1436713 0.975133 -0.5929944 -1.017495 -0.530459}

1234567891011121314

>>> grouped<pandas.core.groupby.DataFrameGroupBy object at 0x041288F0>>>> list(grouped)[(dtype('float64'), data1 data20 -0.410673 0.5193781 -2.120793 0.1990742 0.642216 -0.1436713 0.975133 -0.5929944 -1.017495 -0.530459), (dtype('O'), key1 key20 a one1 a two2 b one3 b two4 a one)]

5、选取一个或一组列
对于由DataFrame产生的GroupBy对象,如果用一个(单个字符串)或一组(字符串数组)列名对其进行索引,就能实现选取部分列进行聚合的目的,即:

123456

>>> df.groupby('key1')['data1']<pandas.core.groupby.SeriesGroupBy object at 0x06615FD0>>>> df.groupby('key1')['data2']<pandas.core.groupby.SeriesGroupBy object at 0x06615CB0>>>> df.groupby('key1')[['data2']]<pandas.core.groupby.DataFrameGroupBy object at 0x06615F10>

和以下代码是等效的:

123456

>>> df['data1'].groupby([df['key1']])<pandas.core.groupby.SeriesGroupBy object at 0x06615FD0>>>> df[['data2']].groupby([df['key1']])<pandas.core.groupby.DataFrameGroupBy object at 0x06615F10>>>> df['data2'].groupby([df['key1']])<pandas.core.groupby.SeriesGroupBy object at 0x06615E30>

尤其对于大数据集,很可能只需要对部分列进行聚合。例如,在前面那个数据集中,如果只需计算data2列的平均值并以DataFrame形式得到结果,代码如下:

1234567891011121314

>>> df.groupby(['key1', 'key2'])[['data2']].mean() data2key1 key2 a one -0.005540 two 0.199074b one -0.143671 two -0.592994>>> df.groupby(['key1', 'key2'])['data2'].mean()key1 key2a one -0.005540 two 0.199074b one -0.143671 two -0.592994Name: data2, dtype: float64

这种索引操作所返回的对象是一个已分组的DataFrame(如果传入的是列表或数组)或已分组的Series(如果传入的是标量形式的单个列明):

12345678910

>>> s_grouped = df.groupby(['key1', 'key2'])['data2']>>> s_grouped<pandas.core.groupby.SeriesGroupBy object at 0x06615B10>>>> s_grouped.mean()key1 key2a one -0.005540 two 0.199074b one -0.143671 two -0.592994Name: data2, dtype: float64

6、通过字典或Series进行分组
除数组以外,分组信息还可以其他形式存在,来看一个DataFrame示例:

123456789101112

>>> people = pd.DataFrame(np.random.randn(5, 5),... columns=['a', 'b', 'c', 'd', 'e'],... index=['Joe', 'Steve', 'Wes', 'Jim', 'Travis']... )>>> people a b c d eJoe 0.306336 -0.139431 0.210028 -1.489001 -0.172998Steve 0.998335 0.494229 0.337624 -1.222726 -0.402655Wes 1.415329 0.450839 -1.052199 0.731721 0.317225Jim 0.550551 3.201369 0.669713 0.725751 0.577687Travis -2.013278 -2.010304 0.117713 -0.545000 -1.228323>>> people.ix[2:3, ['b', 'c']] = np.nan

假设已知列的分组关系,并希望根据分组计算列的总计:

123456

>>> mapping = {'a':'red', 'b':'red', 'c':'blue',... 'd':'blue', 'e':'red', 'f':'orange'}>>> mapping{'a': 'red', 'c': 'blue', 'b': 'red', 'e': 'red', 'd': 'blue', 'f': 'orange'}>>> type(mapping)<type 'dict'>

现在,只需将这个字典传给groupby即可:

12345678910

>>> by_column = people.groupby(mapping, axis=1)>>> by_column<pandas.core.groupby.DataFrameGroupBy object at 0x066150F0>>>> by_column.sum() blue redJoe -1.278973 -0.006092Steve -0.885102 1.089908Wes 0.731721 1.732554Jim 1.395465 4.329606Travis -0.427287 -5.251905

Series也有同样的功能,它可以被看做一个固定大小的映射。对于上面那个例子,如果用Series作为分组键,则pandas会检查Series以确保其索引跟分组轴是对齐的:

12345678910111213141516

>>> map_series = pd.Series(mapping)>>> map_seriesa redb redc blued bluee redf orangedtype: object>>> people.groupby(map_series, axis=1).count() blue redJoe 2 3Steve 2 3Wes 1 2Jim 2 3Travis 2 3

7、通过函数进行分组
相较于字典或Series,Python函数在定义分组映射关系时可以更有创意且更为抽象。任何被当做分组键的函数都会在各个索引值上被调用一次,其返回值就会被用作分组名称。
具体点说,以DataFrame为例,其索引值为人的名字。假设你希望根据人名的长度进行分组,虽然可以求取一个字符串长度数组,但其实仅仅传入len函数即可:

12345

>> people.groupby(len).sum() a b c d e3 2.272216 3.061938 0.879741 -0.031529 0.7219145 0.998335 0.494229 0.337624 -1.222726 -0.4026556 -2.013278 -2.010304 0.117713 -0.545000 -1.228323

将函数跟数组、列表、字典、Series混合使用也不是问题,因为任何东西最终都会被转换为数组:

1234567

>>> key_list = ['one', 'one', 'one', 'two', 'two']>>> people.groupby([len, key_list]).min() a b c d e3 one 0.306336 -0.139431 0.210028 -1.489001 -0.172998 two 0.550551 3.201369 0.669713 0.725751 0.5776875 one 0.998335 0.494229 0.337624 -1.222726 -0.4026556 two -2.013278 -2.010304 0.117713 -0.545000 -1.228323

8、根据索引级别分组
层次化索引数据集最方便的地方在于它能够根据索引级别进行聚合。要实现该目的,通过level关键字传入级别编号或名称即可:

12345678910111213141516171819
>>> columns = pd.MultiIndex.from_arrays([['US', 'US', 'US', 'JP', 'JP'],... [1, 3, 5, 1, 3]], names=['cty', 'tenor'])>>> columnsMultiIndex[US 1, 3, 5, JP 1, 3]>>> hier_df = pd.DataFrame(np.random.randn(4, 5), columns=columns)>>> hier_dfcty US JP tenor 1 3 5 1 30 -0.166600 0.248159 -0.082408 -0.710841 -0.0971311 -1.762270 0.687458 1.235950 -1.407513 1.3040552 1.089944 0.258175 -0.749688 -0.851948 1.6877683 -0.378311 -0.078268 0.247147 -0.018829 0.744540>>> hier_df.groupby(level='cty', axis=1).count()cty JP US0 2 31 2 32 2 33 2 3
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
苹果怎样注销appleid帐号 dk币是什么货币 蒂克币DKcoin是赚钱的捷径,还是骗局 《公输》问题 &lt;&lt;公输&gt;&gt;的"子墨子之守圉有余"是什么意思 《公输》问题~`` 急!!!出自&lt;&lt;公输&gt;&gt;的成语是什么!!!?? 近朱者赤近墨者黑所蕴含的道理最相似的是近朱者赤近墨者黑所蕴含的道 ... ...梦到自己是黑帮老大的女儿,还是蛮嚣张的,那种感觉特别给力! 周公解梦可信吗,夜里做了一夜的噩梦,网上查的特别可怕,寝食难安 python中,用pandas将字符串数据类型转换成浮点数... python中利用pandas怎么处理缺省值 Python,Pandas,创建了Series之后,dtype=np.int... python pandas dataframe的object怎么转换成python... 如何注销京东金条 以京东金条注销,微信转帐他人银行卡的钱要的回来吗 京东金条注销后还可以开结清证明吗 京东金条怎么注销 京东金条注销后能查到如何注销的嘛 京东金条注销账号后结清证明还能开吗 京东金融金条注销的话,是所有信息都删除了吗? 京东金条注销了能恢复吗 京东金条账户注销了还能开结清证明吗 注销京东金条等于这号废了 京东金条注销可以反悔吗? 京东金条注销后其他银行什么时候可以贷款 关闭京东金条有什么影响 iqoo怎么看到哪些应用可以分屏 最新一季开心宝贝五超人的技能都有什么,天使之翼... iqooneo5如何分屏 python pandas中如何将dataframe中的一列字符串类... 在Python中出现了KeyError: &#39;&#39;怎么解决? python pandas 怎样把数字读成字符串格式 Python的pandas 数组如何得到索引值,如图,我要得... 怎么将python时间段(Timedelta)转化为int或float... python中ValueError: could not convert string to... python pandas中describe()各项含义及求值 python输出AttributeError: &#39;str&#39; object has no a... TypeError: &#39;numpy.ndarray&#39; object is not callab... 怎么使用Python中Pandas库Resample,实现重采样,... pandas将某一行设置为列索引(python) python pandas dataframe结构中,一列数据是身份证... python 错误提示TypeError: unsupported operand t... pandas.dataframe怎么把列变成索引 iQOO怎么分屏玩光遇 申万宏源证券怎么下载 我的声望宏源证券怎么找不到了在哪里找啊 申万宏源证券下载的软件老被杀毒软件删除怎么办 申万宏源证券可以登陆哪个炒股软件应用 申万宏源证券手机版交易软件中如何增加均线