费马原理对反射定理的证明
发布网友
发布时间:2022-04-27 13:18
我来回答
共1个回答
热心网友
时间:2023-04-23 23:41
反射定理
考虑由Q发出经反射面到达P的光线.相对于反射面取P的镜像对称点P’,从Q到P任一可能路径QM’P的长度与QM’P’相等.显然,直线QMP’是其中最短的一根,从而路径QMP长度最短.根据肥马原理,QMP是光线的实际路径.
折射定律
考虑由Q出发经折射面折射到达P的光线.作QQ’与PP’平行,故而共面,我们称此平面为Ⅱ.考虑从Q经折射面上任一点M’到P的光线QM’P.由M’作垂足Q’、P’联线的垂线M’M,不难看出QM<QM’,PM<PM’,既光线QM’P在Ⅱ平面上的投影QMP比QM’P本身的光程更短.可见光程最短的路径应在Ⅱ平面内寻找.
假设QQ’=h1,PP'=h2,Q’P’=P,Q'M=x,则
(QMP)=n1QM+n2MP
既 d(QMP)/dx=n1x/根号(h1*h1+x*+)-n2(p-x)/根号(h2*he+(p-x)*(p-x)
由光程的最小条件d(MQP)/dx=0 可得 n1sini1=n2sini2