问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

一元二次方程的解

发布网友 发布时间:2022-04-28 12:15

我来回答

4个回答

热心网友 时间:2023-10-09 00:42

3x^2-5x+2>0 一般式为ax^2+bx+c>0 把a看成3把b看成-5,把c看成2,然后用十字相乘法把3分解成3和1,把2分解成-2和-1,用3乘以-1,用1乘以-2,就得到:
(3x-2)(X-1)>0 ,就得到3x-2>0,x-1>0或者都<0 ,解出
x>2/3,x>1或者x<2/3,x<1,x>1或x<2/3,综上就得到
答案:x>1或x<2/3
一元二次不等式的一般解法是[-b+(b^2-4ac)^1/2]/2a
或者是[-b-+(b^2-4ac)^1/2]/2a,
还有君子定义:X1+X2=-b/a,X1*X2=c/a.
X1和X2是不等式的两个不同的解。

热心网友 时间:2023-10-09 00:43

教学目标

1. 初步掌握用直接开平方法解一元二次方程,会用直接开平方法解形如 的方程;

2. 初步掌握用配方法解一元二次方程,会用配方法解数字系数的一元二次方程;

3. 掌握一元二次方程的求根公式的推导,能够运用求根公式解一元二次方程;

4. 会用因式分解法解某些一元二次方程。

5. 通过对一元二次方程解法的教学,使学生进一步理解“降次”的数学方法,进一步获得对事物可以转化的认识。

教学重点和难点

重点:一元二次方程的四种解法。

难点:选择恰当的方法解一元二次方程。

教学建议:

一、教材分析:

1.知识结构:一元二次方程的解法

2.重点、难点分析

(1)熟练掌握开平方法解一元二次方程

用开平方法解一元二次方程,一种是直接开平方法,另一种是配方法。

如果一元二次方程的一边是未知数的平方或含有未知数的一次式的平方,另一边是一个非负数,或完全平方式,如方程 , 和方程 就可以直接开平方法求解,在开平方时注意取正、负两个平方根。

配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,转化为 的形式来求解。配方时要注意把二次项系数化为1和方程两边都加上一次项系数一半的平方这两个关键步骤。

(2)熟记求根公式 ( )和公式中字母的意义在使用求根公式时要注意以下三点:

1)把方程化为一般形式,并做到 、 、 之间没有公因数,且二次项系数为正整数,这样代入公式计算较为简便。

2)把一元二次方程的各项系数 、 、 代入公式时,注意它们的符号。

3)当 时,才能求出方程的两根。

(3)抓住方程特点,选用因式分解法解一元二次方程

如果一个一元二次方程的一边是零,另一边易于分解成两个一次因式时,就可以用因式分解法求解。这时只要使每个一次因式等于零,分别解两个一元一次方程,得到两个根就是一元二次方程的解。

我们共学习了四种解一元二次方程的方法:直接开平方法;配方法;公式法和因式分解法。解方程时,要认真观察方程的特征,选用适当的方法求解。

二、教法建议

1. 教学方法建议采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,学生获取知识必须通过学生自己一系列思维活动完成,启发诱导学生深入思考问题,有利于培养学生思维灵活、严谨、深刻等良好思维品质.
2. 注意培养应用意识.教学中应不失时机地使学生认识到数学源于实践并反作用于实践.

教学设计示例

教学目标
1. 使学生知道解完全的一元二次方程ax2+bx+c=0(a≠0, b≠0, c≠0)可以转化为适合于直接开平方法的形式(x+m)2=n;
2. 在理解的基础上,牢牢记住配方的关键是“添加的常数项等于一次项系数一半的平方”;
3. 在数学思想方法方面,使学生体会“转化”的思想和掌握配方法。

教学重点和难点
重点:掌握用配方法解一元二次方程。
难点:凑配成完全平方的方法与技巧。

教学过程设计
一 复习
1.完全的一元二次方程的一般形式是什么样的?(注意a≠0)

2.不完全一元二次方程的哪几种形式?

(答:只有三种ax2=0,ax2+c=0,ax2+bx=0(a≠0))

3.对于前两种不完全的一元二次方程ax2=0 (a≠0)和ax2+c=0 (a≠0),我们已经学会了它们的解法。

特别是结合换元法,我们还会解形如(x+m) 2=n(n≥0)的方程。

例 解方程:(x-3) 2=4 (让学生说出过程)。

解:方程两边开方,得 x-3=±2,移项,得 x=3±2。

所以 x1=5,x2=1. (并代回原方程检验,是不是根)

4.其实(x-3) 2=4是一个完全的一元二次方程,我们把原方程展开、整理为一元二次方程。(把这个展开过程写在黑板上)

(x-3) 2=4, ①

x2-6x+9=4, ②

x2-6x+5=0. ③

二 新课
1.逆向思维
我们把上述由方程①→方程②→方程③的变形逆转过来,可以发现,对于一个完全的一元二次方程,不妨试试把它转化为(x+m) 2=n的形式。这个转化的关键是在方程左端构造出一个未知数的一次式的完全平方式(x+m) 2。

2.通过观察,发现规律

问:在x2+2x上添加一个什么数,能成为一个完全平方(x+?)2。 (添一项+1)

即 (x2+2x+1)=(x+1) 2.

算理 x2+4x=2x·2�,所以添2的平方,y2+6y=y2+2y3�,所以添3的平方。

总结规律:对于x2+px,再添上一次项系数一半的平方,就能配出一个含未知数的一个次式的完全平方式。即 .+ ( ) ④

(让学生对④式的右边展开,体会括号内第一项与第二项乘积的2倍,恰是左边的一次

项,括号内第二项的平方,恰是配方时所添的常数项)

热心网友 时间:2023-10-09 00:43

3x^2-5x+2>0
(3x-2)(X-1)>0
3x-2>0,x-1>0或者都<0
x>2/3,x>1或者x<2/3,x<1
x>1或x<2/3

热心网友 时间:2023-10-09 00:44

公式法:因为a=3 b=-5 c=2 然后用公式-b+或-根号下b平方-4ac除以2a
即: X1= -(-5)也就是 5+根号4*3*2除以2*3求得:
5+2倍根号6/6
X2=-5-(-5)也就是 5-根号4*3*2除以2*3求得:5-2倍根号6/6

热心网友 时间:2023-10-09 00:42

3x^2-5x+2>0 一般式为ax^2+bx+c>0 把a看成3把b看成-5,把c看成2,然后用十字相乘法把3分解成3和1,把2分解成-2和-1,用3乘以-1,用1乘以-2,就得到:
(3x-2)(X-1)>0 ,就得到3x-2>0,x-1>0或者都<0 ,解出
x>2/3,x>1或者x<2/3,x<1,x>1或x<2/3,综上就得到
答案:x>1或x<2/3
一元二次不等式的一般解法是[-b+(b^2-4ac)^1/2]/2a
或者是[-b-+(b^2-4ac)^1/2]/2a,
还有君子定义:X1+X2=-b/a,X1*X2=c/a.
X1和X2是不等式的两个不同的解。

热心网友 时间:2023-10-09 00:43

教学目标

1. 初步掌握用直接开平方法解一元二次方程,会用直接开平方法解形如 的方程;

2. 初步掌握用配方法解一元二次方程,会用配方法解数字系数的一元二次方程;

3. 掌握一元二次方程的求根公式的推导,能够运用求根公式解一元二次方程;

4. 会用因式分解法解某些一元二次方程。

5. 通过对一元二次方程解法的教学,使学生进一步理解“降次”的数学方法,进一步获得对事物可以转化的认识。

教学重点和难点

重点:一元二次方程的四种解法。

难点:选择恰当的方法解一元二次方程。

教学建议:

一、教材分析:

1.知识结构:一元二次方程的解法

2.重点、难点分析

(1)熟练掌握开平方法解一元二次方程

用开平方法解一元二次方程,一种是直接开平方法,另一种是配方法。

如果一元二次方程的一边是未知数的平方或含有未知数的一次式的平方,另一边是一个非负数,或完全平方式,如方程 , 和方程 就可以直接开平方法求解,在开平方时注意取正、负两个平方根。

配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,转化为 的形式来求解。配方时要注意把二次项系数化为1和方程两边都加上一次项系数一半的平方这两个关键步骤。

(2)熟记求根公式 ( )和公式中字母的意义在使用求根公式时要注意以下三点:

1)把方程化为一般形式,并做到 、 、 之间没有公因数,且二次项系数为正整数,这样代入公式计算较为简便。

2)把一元二次方程的各项系数 、 、 代入公式时,注意它们的符号。

3)当 时,才能求出方程的两根。

(3)抓住方程特点,选用因式分解法解一元二次方程

如果一个一元二次方程的一边是零,另一边易于分解成两个一次因式时,就可以用因式分解法求解。这时只要使每个一次因式等于零,分别解两个一元一次方程,得到两个根就是一元二次方程的解。

我们共学习了四种解一元二次方程的方法:直接开平方法;配方法;公式法和因式分解法。解方程时,要认真观察方程的特征,选用适当的方法求解。

二、教法建议

1. 教学方法建议采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,学生获取知识必须通过学生自己一系列思维活动完成,启发诱导学生深入思考问题,有利于培养学生思维灵活、严谨、深刻等良好思维品质.
2. 注意培养应用意识.教学中应不失时机地使学生认识到数学源于实践并反作用于实践.

教学设计示例

教学目标
1. 使学生知道解完全的一元二次方程ax2+bx+c=0(a≠0, b≠0, c≠0)可以转化为适合于直接开平方法的形式(x+m)2=n;
2. 在理解的基础上,牢牢记住配方的关键是“添加的常数项等于一次项系数一半的平方”;
3. 在数学思想方法方面,使学生体会“转化”的思想和掌握配方法。

教学重点和难点
重点:掌握用配方法解一元二次方程。
难点:凑配成完全平方的方法与技巧。

教学过程设计
一 复习
1.完全的一元二次方程的一般形式是什么样的?(注意a≠0)

2.不完全一元二次方程的哪几种形式?

(答:只有三种ax2=0,ax2+c=0,ax2+bx=0(a≠0))

3.对于前两种不完全的一元二次方程ax2=0 (a≠0)和ax2+c=0 (a≠0),我们已经学会了它们的解法。

特别是结合换元法,我们还会解形如(x+m) 2=n(n≥0)的方程。

例 解方程:(x-3) 2=4 (让学生说出过程)。

解:方程两边开方,得 x-3=±2,移项,得 x=3±2。

所以 x1=5,x2=1. (并代回原方程检验,是不是根)

4.其实(x-3) 2=4是一个完全的一元二次方程,我们把原方程展开、整理为一元二次方程。(把这个展开过程写在黑板上)

(x-3) 2=4, ①

x2-6x+9=4, ②

x2-6x+5=0. ③

二 新课
1.逆向思维
我们把上述由方程①→方程②→方程③的变形逆转过来,可以发现,对于一个完全的一元二次方程,不妨试试把它转化为(x+m) 2=n的形式。这个转化的关键是在方程左端构造出一个未知数的一次式的完全平方式(x+m) 2。

2.通过观察,发现规律

问:在x2+2x上添加一个什么数,能成为一个完全平方(x+?)2。 (添一项+1)

即 (x2+2x+1)=(x+1) 2.

算理 x2+4x=2x·2�,所以添2的平方,y2+6y=y2+2y3�,所以添3的平方。

总结规律:对于x2+px,再添上一次项系数一半的平方,就能配出一个含未知数的一个次式的完全平方式。即 .+ ( ) ④

(让学生对④式的右边展开,体会括号内第一项与第二项乘积的2倍,恰是左边的一次

项,括号内第二项的平方,恰是配方时所添的常数项)

热心网友 时间:2023-10-09 00:43

3x^2-5x+2>0
(3x-2)(X-1)>0
3x-2>0,x-1>0或者都<0
x>2/3,x>1或者x<2/3,x<1
x>1或x<2/3

热心网友 时间:2023-10-09 00:44

公式法:因为a=3 b=-5 c=2 然后用公式-b+或-根号下b平方-4ac除以2a
即: X1= -(-5)也就是 5+根号4*3*2除以2*3求得:
5+2倍根号6/6
X2=-5-(-5)也就是 5-根号4*3*2除以2*3求得:5-2倍根号6/6
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
...经常感到孤独、万事无聊,请问怎样治疗孤独?谢谢! 移动号码不用了一段时间现在拨号显示空号要怎么激活 圣女小番茄简介 《一曲终人两散》最新txt全集下载 石膏几何体写生内容简介 石膏几何体内容简介 句子: We mustn't climb the trees.怎么填空? 市妇婴医院生产点样建档? 长治怀孕建档要准备什么材料呢? 工厂隔音房 如何做好多项目管理? 多项目管理的多项目管理的原因 多项目管理的什么是多项目管理 多项目进度管理应该注意什么? 工程项目很多,如何做好项目管理? 多项目如何同时做好进度管理? 什么是多项目管理?多项目管理的办法? 多项目并行,如何保证各项目质量完成? 1对多的项目管理如何进行? 如何更加有效地管理多项目? 如何做好多项目进度管理? 如果让你同时管理多个施工项目如何管理 如何更好的进行多项目管理 如何有效进行多项目管理 css中li设了左浮动,如何使它宽度超过ul以后依然不自动换行,成横排显示? 如何有效进行多项目管理? 谁帮我找个室内设计计划书? 最强帝国里面是同阵营之前是加为好友,但已经删了为什么还能聊天, 热血高校实力排行是怎样的? 燕大将乐毅如何一步一步的把秦国送到战国最强帝国之位? 一元二次方程的解法——配方法(2)优秀公开课课&#x013B; 一元二次方程有哪些解法?解法怎么用? 怎样解一元二次方程组? cust什么意思 一元二次方程四种解法的总结是什么? cust.是什么意思 customer什么意思中文翻译 一元二次方程的详细解法 customer是什么意思及反义词 一元二次方程求解方法 CUSTOMERS是什么意思? 一元二次方程解法,举几个例子要过程 CUST.P/N汉语是什么 一元二次方程常见的四种解法及其适用对象 cust model是什么意思中文翻译成? cust_name什么意思 求TRAIL SAMPLE ; CONF.SAMPLE ; CUST.SAMPLE ;在外贸中的中文翻译 刷入cust是什么意思? custorder中文什么意思? iaunchercust中文是什么