发布网友 发布时间:2022-04-28 11:21
共1个回答
热心网友 时间:2023-10-05 06:00
惹X~N(p,k^2)的正态分布,则Z=(X-p)/k~N(0,1)的标准正态分布,即统计量减期望值后除以方差。
假设X~N(μ,σ^2),则Y=(X-μ)/σ~N(0,1).证明;因为X~N(μ,σ^2),所以P(x)=(2π)^(-1/2)*σ^(-1)*exp{[-(x-μ)^2]/(2σ^2)}
(注:F(y)为Y的分布函数,Fx(x)为X的分布函数)
扩展资料
标准正态分布又称为u分布,是以0为均数、以1为标准差的正态分布,记为N(0,1)。
标准正态分布曲线下面积分布规律是:在-1.96~+1.96范围内曲线下的面积等于0.9500,在-2.58~+2.58范围内曲线下面积为0.9900。统计学家还制定了一张统计用表(自由度为∞时),借助该表就可以估计出某些特殊u1和u2值范围内的曲线下面积。
热心网友 时间:2023-10-05 06:00
惹X~N(p,k^2)的正态分布,则Z=(X-p)/k~N(0,1)的标准正态分布,即统计量减期望值后除以方差。
假设X~N(μ,σ^2),则Y=(X-μ)/σ~N(0,1).证明;因为X~N(μ,σ^2),所以P(x)=(2π)^(-1/2)*σ^(-1)*exp{[-(x-μ)^2]/(2σ^2)}
(注:F(y)为Y的分布函数,Fx(x)为X的分布函数)
扩展资料
标准正态分布又称为u分布,是以0为均数、以1为标准差的正态分布,记为N(0,1)。
标准正态分布曲线下面积分布规律是:在-1.96~+1.96范围内曲线下的面积等于0.9500,在-2.58~+2.58范围内曲线下面积为0.9900。统计学家还制定了一张统计用表(自由度为∞时),借助该表就可以估计出某些特殊u1和u2值范围内的曲线下面积。