在vb中二叉树是什么东西,我们的书上没有,而且二叉树的相关知识有哪些要...
发布网友
发布时间:2022-04-29 01:51
我来回答
共2个回答
热心网友
时间:2022-04-22 13:41
二叉树
在计算机科学中,二叉树是每个结点最多有两个子树的有序树。通常子树的根被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用作二叉查找树和二叉堆。二叉树的每个结点至多只有二棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒。二叉树的第i层至多有2的(i-1)次方个结点;深度为k的二叉树至多有2k次 − 1个结点;对任何一棵二叉树T,如果其终端结点数(即叶子结点数)为n0,度为2的结点数为n2,则n0 = n2 + 1。
树和二叉树的2个主要差别:
1. 树中结点的最大度数没有*,而二叉树结点的最大度数为2;
2. 树的结点无左、右之分,而二叉树的结点有左、右之分。……
树是一种重要的非线性数据结构,直观地看,它是数据元素(在树中称为结点)按分支关系组织起来的结构,很象自然界中的树那样。树结构在客观世界中广泛存在,如人类社会的族谱和各种社会组织机构都可用树形象表示。树在计算机领域中也得到广泛应用,如在编译源程序如下时,可用树表示源源程序如下的语法结构。又如在数据库系统中,树型结构也是信息的重要组织形式之一。一切具有层次关系的问题都可用树来描述。追问说实话,太专业了,没看懂,而且算法也没有给出来,能不能说简单一点
追答这个本来就不是容易理解的东西,要讲清楚,那可是要写长篇大论的。
要实现二叉树也是不可能用简单的几行、几十行、几百行代码可以讲清楚,
简单的说,二叉树只是一种存储和查询数据的方法。用合理的方法组织数据,以便于数据的查找、增加、删除、修改。
热心网友
时间:2022-04-22 14:59
结构,它的特点是每个结点至多只有二棵子 树 (即二叉树中不存在度大于 2的结点 ),并且,二叉树的子树有左右之分,其次序不能任意颠倒 . 二叉树是一种数据结构 :
Binary_tree=(D,R)
其中: D是具有相同特性的数据元素的集合 ;若 D等于空 ,则 R等于空称为空的二叉树 ;若 D等于空则 R是 D上某个二元关系 H的集合,即 R=,且
(1) D 中存在唯一的称为根的元素 r,它的关系 H下无前驱 ;
(2) 若 D-不等于空,则 D-=,且 Dl交 Dr等于空 ;
(3) 若 Dl不等于空 ,则在 Dl中存在唯一的元素 xl,〈 r,xl〉属于 H,且存在 Dl上的关系 Hl属于 H; 若 Dr不等于空 ,则在 Dr中存在唯一的元素 xr,〈 r,xr〉 >属于 H, 且存 Dr上的关 系 Hr属于 H; H=;
(4) (Dl, Hl) 是一棵合本定义的二叉树,称为根 r的左子树 ,(Dr,Hr)是一棵符合定义的二叉树,称为根的右子树。
其中,图 6.2 是各种形态的二叉树 .
(1) 为空二叉树 (2)只有一个根结点的二叉树 (3)右子树为空的二叉树 (4)左子树为空的二叉树 (5)完全二叉树
二叉树的基本操作:
(1)INITIATE(BT ) 初始化操作。置 BT为空树。
(2)ROOT(BT)\ROOT(x) 求根函数。求二叉树 BT的根结点或求结点 x所在二叉树的根结点。
若 BT是空树或 x不在任何二叉树上,则函数值为 “空 ”。
(3)PARENT(BT,x) 求双亲函数。求二叉树 BT中结点 x的双亲结点。若结点 x是二叉树 BT 的根结点
或二叉树 BT中无 x结点,则函数值为 “空 ”。
(4)LCHILD(BT,x) 和 RCHILD(BT,x) 求孩子结点函数。分别求二叉树 BT中结点 x的左孩 子和右孩子结点。
若结点 x为叶子结点或不在二叉树 BT中,则函数值为 “空 ”。
(5)LSIBLING(BT,x) 和 RSIBING(BT,x) 求兄弟函数。分别求二叉树 BT中结点 x的左兄弟和右兄弟结点。
若结点 x是根结点或不在 BT中或是其双亲的左 /右子树根 ,则函树值 为 “空 ”。
(6)CRT_BT(x,LBT,RBT) 建树操作。生成一棵以结点 x为根,二叉树 LBT和 RBT分别为左, 右子树的二叉树。
(7)INS_LCHILD(BT,y,x) 和 INS_RCHILD(BT,x) 插入子树操作。将以结点 x为根且右子树为空的二叉树
分别置为二叉树 BT中结点 y的左子树和右子树。若结点 y有左子树 /右子树,则插入后是结点 x的右子树。
(8)DEL_LCHILD(BT,x) 和 DEL-RCHILD(BT,x) 删除子树操作。分别删除二叉树 BT中以结点 x为根的左子树或右子树。
若 x无左子树或右子树,则空操作。
(9)TRAVERSE(BT) 遍历操作。按某个次序依此访问二叉树中各个结点,并使每个结点只被访问一次。
(10)CLEAR(BT) 清除结构操作。将二叉树 BT置为空树。
5.2.2 二叉树的存储结构
一 、顺序存储结构
连续的存储单元存储二叉树的数据元素。例如图 6.4(b)的完全二叉树 , 可以向量 (一维数组 ) bt(1:6)作它的存储结构,将二叉树中编号为 i的结点的数据元素存放在分量 bt[i]中 ,如图 6.6(a) 所示。但这种顺序存储结构仅适合于完全二叉树 ,而一般二叉树也按这种形式来存储 ,这将造成存 贮浪费。如和图 6.4(c)的二叉树相应的存储结构图 6.6(b)所示,图中以 “0”表示不存在此结点 .
二、 链式存储结构
由二叉树的定义得知二叉树的结点由一个数据元素和分别指向左右子树的两个分支构成 ,则表 示二叉树的链表中的结点至少包含三个域 :数据域和左右指针域 ,如图 (b)所示。有时 ,为了便于找 到结点的双亲 ,则还可在结点结构中增加一个指向其双亲受的指针域,如图 6.7(c)所示。
5.3 遍历二叉树
遍历二叉树 (traversing binary tree)的问题, 即如何按某条搜索路径巡访树中每个结点,使得每个结点均被访问一次,而且仅被访问一次。 其中常见的有三种情况:分别称之为先 (根 )序遍历,中 (根 )序遍历和后 (根 )序遍历。
5.3.1 前序遍历
前序遍历运算:即先访问根结点,再前序遍历左子树,最后再前序遍历右子树。前序遍历运算访问二叉树各结点是以根、左、右的顺序进行访问的。例如:
按前序遍历此二叉树的结果为: Hello!How are you?
proc preorder(bt:bitreprtr)
if (bt<>null)[
print(bt^);
preorder(bt^.lchild);
preorder(bt^.rchild);]
end;
5.3.2 中序遍历
中序遍历运算:即先中前序遍历左子树,然后再访问根结点,最后再中序遍历右子树。中序遍历运算访问二叉树各结点是以左、根、右的顺序进行访问的。例如:
按中序遍历此二叉树的结果为: a*b-c
proc inorder(bt:bitreprtr)
if (bt<>null)[
inorder(bt^.lchild);
print(bt^);
niorder(bt^.rchild);]
end;
5.3.3 后序遍历
后序遍历运算:即先后序遍历左子树,然后再后序遍历右子树,最后访问根结点。后序遍历运算访问二叉树各结点是以左、右、根的顺序进行访问的。例如:
按后序遍历此二叉树的结果为: Welecome to use it!
proc postorder(bt:bitreprtr)
if (bt<>null)[
postorder(bt^.lchild);
postorder(bt^.rchild);]
print(bt^);
end;
五、例:
1.用顺序存储方式建立一棵有31个结点的满二叉树,并对其进行先序遍历。
2.用链表存储方式建立一棵如图三、4所示的二叉树,并对其进行先序遍历。
3.给出一组数据:R=,试编程序,先构造一棵二叉树,然后以中序遍历访问所得到的二叉树,并输出遍历结果。
4.给出八枚金币a,b,c,d,e,f,g,h,编程以称最少的次数,判定它们蹭是否有假币,如果有,请找出这枚假币,并判定这枚假币是重了还是轻了。追问结点计算方法呢???图怎么不见了??