发布网友 发布时间:2022-04-20 03:55
共4个回答
热心网友 时间:2022-07-12 07:46
分母在x=0、x=1、x=-1这三个点时,分母为0,所以这三个点是其间断点。
分母中有个|x|,这就是个关键点。因为|x|在x大于0和x小于0的时候,是不同的表达式。当x>0时,|x|=x,当x<0时,|x|=-x
所以f(x)在x>0和x<0的时候,有不同的表达式。因此从x<0方向趋近于0(x=0时的左极限)和从x>0的方向趋近于0(x=0时的右极限)需要用不同的表达式。所以左右极限可能会不一致。
但是因为分子也有x这个因式(分子x²-x=x(x-1)),所以无论是x>0还是x<0,分子分母的x在求极限时,都可以约去。所以x=0这点有左右极限,但左右极限不相等,是跳跃间断点,属于第一类间断点。
x=1时,在x=1附近,x都是正数,|x|表达式不变,就是x,所以f(x)在x=1左右表达式不变。所以这个点的左右极限情况相同,如果有,左右极限相等;如果一个无,另一个也无。
而分子分母都有x-1这个因式,可以约去。所以左右极限存在且相等,是可去间断点,属于第一类间断点。
x=-1这个点附近x都是负数,所以f(x)在x=-1附近表达式不变,因为x趋近于-1时,分母极限为0,分子极限不是0,所以极限是无穷大,是无穷间断点,属于第二类间断点。
设一元实函数f(x)在点x0的某去心邻域内有定义。如果函数f(x)有下列情形之一:
(1)函数f(x)在点x0的左右极限都存在但不相等,即f(x0+)≠f(x0-);
(2)函数f(x)在点x0的左右极限中至少有一个不存在;
(3)函数f(x)在点x0的左右极限都存在且相等,但不等于f(x0)或者f(x)在点x0无定义。
则函数f(x)在点x0为不连续,而点x0称为函数f(x)的间断点。
扩展资料:
间断点分为可去间断点、跳跃间断点、无穷间断点、震荡间断点,其中可去间断点和跳跃间断点属于第一类间断点。
在第一类间断点中,有两种情况。左右极限相等,但不等于该点函数值f(x0)或者该点无定义时,称为可去间断点,如函数y=(x^2-1)/(x-1)在点x=1处;左右极限在该点不相等时,称为跳跃间断点,如函数y=|x|/x在x=0处。
间断点几种常见类型:
1 可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义。如函数y=(x^2-1)/(x-1)在点x=1处。
2 跳跃间断点:函数在该点左极限、右极限存在,但不相等。如函数y=|x|/x在点x=0处。
3 无穷间断点:函数在该点可以无定义,且左极限、右极限至少有一个不存在,且函数在该点极限为∞。如函数y=tanx在点x=π/2处。
4 振荡间断点:函数在该点可以无定义,当自变量趋于该点时,函数值在两个常数间变动无限多次。如函数y=sin(1/x)在x=0处。
5 可去间断点和跳跃间断点称为第一类间断点,也叫有限型间断点。其它间断点称为第二类间断点。
由上述对各种间断点的描述可知,函数f(x)在第一类间断点的左右极限都存在,而函数f(x)在第二类间断点的左右极限至少有一个不存在,这也是第一类间断点和第二类间断点的本质上的区别。
热心网友 时间:2022-07-12 07:47
函数f(x)在第一类间断点的左右极限都存在,而函数f(x)在第二类间断点的左右极限至少有一个不存在,这也是第一类间断点和第二类间断点的本质上的区别。
1、可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义。如函数y=(x²-1)/(x-1)在点x=1处。
2、跳跃间断点:函数在该点左极限、右极限存在,但不相等。如函数y=|x|/x在点x=0处。
3、无穷间断点:函数在该点可以无定义,且左极限、右极限至少有一个不存在,且函数在该点极限为∞。如函数y=tanx在点x=π/2处。
4、振荡间断点:函数在该点可以无定义,当自变量趋于该点时,函数值在两个常数间变动无限多次。如函数y=sin(1/x)在x=0处。
5、可去间断点和跳跃间断点为第一类间断点,也叫有限型间断点。其它间断点为第二类间断点。
扩展资料
有间断点的函数
1、狄利克雷函数
在定义域R上每一点x为第二类间断点。
2、函数
仅在点x=0连续,x≠0时为第二类间断点。
3、整数部函数y=[x],与小数部函数y=x-[x],都是在x为整数时为第一类不可去间断点,在这些点仍是右连续的。
4、黎曼函数
在每一个无理点都连续,而在异与零的有理点都不连续。
5、函数
在点x=0附近函数振荡而无极限,x=0为它的第二类间断点。
6、函数
在点x=0为可去间断点,并且
7、函数
在点x=0为可去间断点。
8、函数
在点x=0为第二类间断点。
参考资料来源:百度百科-间断点及其分类
参考资料来源:百度百科-间断点
热心网友 时间:2022-07-12 07:47
这里有几个关键的,这几个关键地方掌握了,这道题目几乎不用计算,仅凭目测就能知道各个间断点的类型,这对于做填空题、选择题、判断题能节省不少时间。即使对做计算题,对结果有了预知,算起来也不容易错。追答这个式子无论趋近于任何数(只要不是无穷大),分子分母就必然存在极限,其极限就是对应的函数值。所以如果使得分子和分母的极限是非0的实数,那么极限必然存在。
那么什么时候左右极限不存在呢?分子极限是非0的实数,分母极限是0,那么这时候左右极限就是无穷大,就是不存在了。
所以你先看什么时候,分母的极限是0,也就是说当x取什么值的时候,分母等于0(这时候依据初等函数定义域内连续的原理),然后看这些使分母等于0的点,能不能使分子也等于0,如果这些点使得分子不等于0,例如这个题目中的x=-1,那么极限就不存在。
如果这些点使得分子极限也为0,那么就使用约分、等价无穷小等方法把等于0的因式约去后,再按照上面的去做。
热心网友 时间:2022-07-12 07:48
上下消得掉的是第一类,消不掉的第二类