基本不等式的公式
发布网友
发布时间:2022-04-27 07:54
我来回答
共1个回答
热心网友
时间:2023-09-14 04:37
对于正数a、b.
A=(a+b)/2,叫做a、b的算术平均数
G=√(ab),叫做a、b的几何平均数
S=√[(a^2+b^2)/2],叫做a、b的平方平均数
H=2/(1/a+1/b)=2ab/(a+b)叫做调和平均数
不等关系:H=<G=<A=<S.其中G=<A是基本的。
G=<A证:
√a-√b是实数,所以(√a-√b)^2>=0
--->a+b-2√(ab)>=0
--->√(ab)=<(a+b)/2
A=<S证:
依G=<A,有2ab=<a^2+b^2
--->a^2+b^2+2ab=<2(a^2+b^2)
--->(a+b)^2=<2(a^2+b^2)
--->(a+b)^2*(1/4)=<(a^2+b^2)/2
--->(a+b)/2=√[(a^2+b^2)/2]
H=<G证:
依G=<A,有2√(ab)=<a+b
两边同时乘2√(ab)/(a+b)得
2ab/(a+b)=<√(ab)追问是和定积有最小值还是?
追答不谢
基本不等式的公式 基本不等式的公式及变形
基本不等式公式有:a+b≥2√(ab)。a大于0,b大于0,当且仅当a=b时,等号成立。常用不等式公式:1、√(a^2+b^2)/2≥(a+b)/2≥√ab≥2/(1/a+1/b);2、√(ab)≤(a+b)/2;3、a^2+b^2≥2ab4、ab≤(a+b)^2/4;5、||a|-|b||≤|a+b|≤|a|+|b|。基...
高中数学基本不等式是哪些?
2、绝对值不等式公式:| |a|-|b| |≤|a-b|≤|a|+|b|。| |a|-|b| |≤|a+b|≤|a|+|b|。3、柯西不等式:设a1,a2,…an,b1,b2…bn均是实数,则有(a1b1+a2b2+…+anbn)^2≤(a1^2+a2^2+…an^2)*(b1^2+b2^2+…bn^2) 当且仅当ai=λbi(λ为常数,i=1,2.3,…n...
基本不等式的公式是什么?
a+b≥2√ab是基本不等式的公式。基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。变形 a+b≥2√ab当且仅a=b 时取等号。
不等式有哪四种基本的形式?
四个基本不等式公式:1、a²+b²≥2ab。(当且仅当a=b时,等号成立)2、√(ab)≤(a+b)/2。(当且仅当a=b时,等号成立)3、a+b≥2√(ab)。(当且仅当a=b时,等号成立)4、 ab≤[(a+b)/2]²。(当且仅当a=b时,等号成立)。基本不等式的定义:基本不...
不等式基本的公式有哪些?
1、基本不等式:√(ab)≤(a+b)/2 那么可以变为 a^2-2ab+b^2 ≥ 0 a^2+b^2 ≥ 2ab ab≤a与b的平均数的平方 2、绝对值不等式公式:| |a|-|b| |≤|a-b|≤|a|+|b| | |a|-|b| |≤|a+b|≤|a|+|b| 3、柯西不等式:设a1,a2,…an,b1,b2…bn均是实数,则有(...
不等式有哪几种基本形式?
基本不等式公式:1、加减不等式:若ab,则a+c>b+c。2、乘法不等式:若a,b,c>0(或c<0),则ac<bc(或ac>bc);若a0(或c>0),则ac>bc(或ac<bc)。3、平方不等式:若a是任意实数,则有a^2≥0;对于任意实数a和b,有(a+b)^2≥0,即a^2+2ab+b^2≥0;对于任意实数a和正...
什么是基本不等式?有哪些?
基本不等式是数学中常用的不等式关系,包括四个基本的不等式公式:算术平均-几何平均不等式、均值不等式、柯西-施瓦茨不等式和三角不等式。1.算术平均-几何平均不等式(AM-GM Inequality)算术平均-几何平均不等式是指对于非负实数的任意一组数,其算术平均值不小于它们的几何平均值。数学表达式如下:对于非...
高中数学6个基本不等式的公式有哪些?
高中6个基本不等式的公式有a^2+b^2≧2ab、√ab≦(a+b)/2、b/a+a/b≧2、(a+b+c)/3≧³√abc、a^3+b^3+c^3≧3abc、柯西不等式。1、基本不等式a^2+b^2≧2ab:针对任意的实数a,b都成立,当且仅当a=b时,等号成立。证明的过程:因为(a-b)^2≧0,展开的a^2+b^...
基本不等式公式大全
基本不等式公式大全:一、均值不等式 均值不等式公式:对于所有正数a_i,有AM-GM不等式A≥G,其中A是各项平均值,G是各项的几何平均值。即,对于正数a和b,有√ab ≤ /2。不等式当且仅当所有数相等时取等号。常被用于处理数学问题和生活中的估算问题。其中包含了两种特例,分别为:AM≤LM与GM≤...
基本不等式公式四个等号成立条件有哪些?
基本不等式公式四个等号成立条件是一正二定三相等,是指在用不等式A+B≥2√AB证明或求解问题时所规定和强调的特殊要求。一正:A、B 都必须是正数;二定:在A+B为定值时,便可以知道A*B的最大值;在A*B为定值时,就可以知道A+B的最小值。三相等:当且仅当A、B相等时,等号才成立;即在A=...