发布网友 发布时间:2022-04-27 04:23
共1个回答
热心网友 时间:2022-06-26 03:56
1.可伸缩由于数据产生和采集技术的进步,数太字节(TB)、数拍字节(PB)甚至数艾字节(EB)的数据集越来越普遍。如果数据挖掘算法要处理这些海量数据集,则算法必须是可伸缩的。许多数据挖掘算法采用特殊的搜索策略来处理指数级的搜索问题。为实现可伸缩可能还需要实现新的数据结构,才能以有效的方式访问每个记录。
例如,当要处理的数据不能放进内存时,可能需要核外算法。使用抽样技术或开发并行和分布式算法也可以提高可伸缩程度。
2.高维性
现在,常常会遇到具有成百上千属性的数据集,而不是几十年前常见的只具有少量属性的数据集。在生物信息学领域,微阵列技术的进步已经产生了涉及数千特征的基因表达数据。具有时间分量或空间分量的数据集也通常具有很高的维度。
例如,考虑包含不同地区的温度测量结果的数据集,如果在一个相当长的时间周期内反复地测量,则维数(特征数)的增长正比于测量的次数。为低维数据开发的传统数据分析技术通常不能很好地处理这类高维数据,如维灾难问题。此外,对于某些数据分析算法,随着维数(特征数)的增加,计算复杂度会迅速增加。
3.异构数据和复杂数据
通常,传统的数据分析方法只处理包含相同类型属性的数据集,或者是连续的,或者是分类的。随着数据挖掘在商务、科学、医学和其他领域的作用越来越大,越来越需要能够处理异构属性的技术。
近年来,出现了更复杂的数据对象。这种非传统类型的数据如:含有文本、超链接、图像、音频和视频的Web和社交媒体数据,具有序列和三维结构的DNA数据,由地球表面不同位置、不同时间的测量值(温度、压力等)构成的气候数据。
为挖掘这种复杂对象而开发的技术应当考虑数据中的联系,如时间和空间的自相关性、图的连通性、半结构化文本和XML文档中元素之间的父子关系。
4.数据的所有权与分布
有时,需要分析的数据不会只存储在一个站点,或归属于一个机构,而是地理上分布在属于多个机构的数据源中。这就需要开发分布式数据挖掘技术。分布式数据挖掘算法面临的主要挑战包括:
如何降低执行分布式计算所需的通信量?如何有效地统一从多个数据源获得的数据挖掘结果?如何解决数据安全和隐私问题?
5.非传统分析
传统的统计方法基于一种假设检验模式,即提出一种假设,设计实验来收集数据,然后针对假设分析数据。但是,这一过程劳力费神。当前的数据分析任务常常需要产生和评估数千种假设,因此需要自动地产生和评估假设,这促使人们开发了一些数据挖掘技术。
此外,数据挖掘所分析的数据集通常不是精心设计的实验的结果,并且它们通常代表数据的时机性样本(opportunistic sample),而不是随机样本(random sample)。