发布网友 发布时间:2022-04-27 04:19
共1个回答
热心网友 时间:2022-06-26 02:35
数列问题 等差数列 a1 a1+d a1+2d a1+3d a1+4d a1+5d..........a1+(n-1)d 重要的性质 性质1 an=am+(n-m)d 性质2 a1+an=a2+a n-1=a3+a n-2 =a n/2 +a n/2+1(n=2g 且g为正整数数) 性质3 a1+an=a2+a n-1=.......=2*a n/2 (n 为奇数 且n>1) 性质4 在等差数列中 若 m+n=p+q 则 am+an=ap+aq 性质5 在等差数列中 若 an=m am=n 则 a第(m+n) =0 且公差为-1的等差数列 性质6 在两个等差数列中 an 与bn中公差分别为d1 d2 则a的bn 项 成等差数列 公差为d1*d2 性质7 在两个数列中 an bn 公差为d1 d2 若存在公共项 则公共项成等差数列 则公差为 d1 与d2的公倍数 性质8 在等差数列中 若sn=m sm=n 则s第m+n =-(m+n) 性质9 在等差数列中 若sn=sm 则 s第m+n =0 性质10 前n项和的计算方法 1, (a1+an)*(n/2)=a2+a n-1)*n/2=........ 2, n *a1+d*n*(n-1)/2 性质11 在等差数列中 前k项和 中k项和 后k项和 成等差数列 则公差为 k方*d 等比数列 a1 a1 p a1p^2 a1p^3 a1p^4 ........ a1 p^(n-1) 性质1 前n项和的计算方法 (a1-an*p)/(1-p)=(a1-a1p^n)/(1-p) 性质2 a1*an=a2*a n-1=a3*a n-2=.........(a n/2) 方(n为奇数 且n>1) 性质3 a1*an=a2*a n-1=.........=a g*a g+1 (n=2g) 性质4 若在等比数列种 m+n=k+h 则am*an=ak*ah 性质5 若在数列中 an是等比数列公比为p bn是等差数列 公差为d 则a的bn项 成等比数列 公比为p^d 性质6 前n项积的计算方法 a1^n *p^[n(n-1)/2] 性质7 等比数列的前k项积 中k项积 后k项积 成等比数列 公比为 (p^k)^k=p^(k^2) 性质8 等比数列的前k项和 种k项和 后k项和 成等比数列 公比为p^k 关于一些 常见的数列 问题 1方+2方+3方+。。。。。。+n方=n(2n+1)(n+1)/6 1^3 +2^3+ 3^3 +4^3+........+n^3= (1+2+3+。。。。。。。+n)^2 =[(1+n)*(n/2)]^2 数列中 1 2 3 5 8 13 21 。。。。。。。。。每一项都是前两项的和 则通项公式为 (1/根号5)*{[(1+根号5)/2]^n -[(1-根号5)/2]^n} 非常重要的数列