问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

Spark RDD,DataFrame和DataSet的区别

发布网友 发布时间:2022-04-27 07:29

我来回答

2个回答

热心网友 时间:2022-04-09 03:13

RDD、DataFrame和DataSet是容易产生混淆的概念,必须对其相互之间对比,才可以知道其中异同。

RDD和DataFrame

RDD-DataFrame

上图直观地体现了DataFrame和RDD的区别。左侧的RDD[Person]虽然以Person为类型参数,但Spark框架本身不了解
Person类的内部结构。而右侧的DataFrame却提供了详细的结构信息,使得Spark
SQL可以清楚地知道该数据集中包含哪些列,每列的名称和类型各是什么。DataFrame多了数据的结构信息,即schema。RDD是分布式的
Java对象的集合。DataFrame是分布式的Row对象的集合。DataFrame除了提供了比RDD更丰富的算子以外,更重要的特点是提升执行效
率、减少数据读取以及执行计划的优化,比如filter下推、裁剪等。

提升执行效率

RDD
API是函数式的,强调不变性,在大部分场景下倾向于创建新对象而不是修改老对象。这一特点虽然带来了干净整洁的API,却也使得Spark应用程序在运
行期倾向于创建大量临时对象,对GC造成压力。在现有RDD
API的基础之上,我们固然可以利用mapPartitions方法来重载RDD单个分片内的数据创建方式,用复用可变对象的方式来减小对象分配和GC的
开销,但这牺牲了代码的可读性,而且要求开发者对Spark运行时机制有一定的了解,门槛较高。另一方面,Spark
SQL在框架内部已经在各种可能的情况下尽量重用对象,这样做虽然在内部会打破了不变性,但在将数据返回给用户时,还会重新转为不可变数据。利用
DataFrame API进行开发,可以免费地享受到这些优化效果。

减少数据读取

分析大数据,最快的方法就是 ——忽略它。这里的“忽略”并不是熟视无睹,而是根据查询条件进行恰当的剪枝。

上文讨论分区表时提到的分区剪 枝便是其中一种——当查询的过滤条件中涉及到分区列时,我们可以根据查询条件剪掉肯定不包含目标数据的分区目录,从而减少IO。

对于一些“智能”数据格 式,Spark
SQL还可以根据数据文件中附带的统计信息来进行剪枝。简单来说,在这类数据格式中,数据是分段保存的,每段数据都带有最大值、最小值、null值数量等

一些基本的统计信息。当统计信息表名某一数据段肯定不包括符合查询条件的目标数据时,该数据段就可以直接跳过(例如某整数列a某段的最大值为100,而查
询条件要求a > 200)。

此外,Spark SQL也可以充分利用RCFile、ORC、Parquet等列式存储格式的优势,仅扫描查询真正涉及的列,忽略其余列的数据。

执行优化

人口数据分析示例

为了说明查询优化,我们来看上图展示的人口数据分析的示例。图中构造了两个DataFrame,将它们join之后又做了一次filter操作。如
果原封不动地执行这个执行计划,最终的执行效率是不高的。因为join是一个代价较大的操作,也可能会产生一个较大的数据集。如果我们能将filter
下推到 join下方,先对DataFrame进行过滤,再join过滤后的较小的结果集,便可以有效缩短执行时间。而Spark
SQL的查询优化器正是这样做的。简而言之,逻辑查询计划优化就是一个利用基于关系代数的等价变换,将高成本的操作替换为低成本操作的过程。

得到的优化执行计划在转换成物 理执行计划的过程中,还可以根据具体的数据源的特性将过滤条件下推至数据源内。最右侧的物理执行计划中Filter之所以消失不见,就是因为溶入了用于执行最终的读取操作的表扫描节点内。

对于普通开发者而言,查询优化 器的意义在于,即便是经验并不丰富的程序员写出的次优的查询,也可以被尽量转换为高效的形式予以执行。

RDD和DataSet

DataSet以Catalyst逻辑执行计划表示,并且数据以编码的二进制形式被存储,不需要反序列化就可以执行sorting、shuffle等操作。
DataSet创立需要一个显式的Encoder,把对象序列化为二进制,可以把对象的scheme映射为SparkSQl类型,然而RDD依赖于运行时反射机制。

通过上面两点,DataSet的性能比RDD的要好很多。

DataFrame和DataSet

Dataset可以认为是DataFrame的一个特例,主要区别是Dataset每一个record存储的是一个强类型值而不是一个Row。因此具有如下三个特点:

DataSet可以在编译时检查类型

并且是面向对象的编程接口。用wordcount举例:
//DataFrame

// Load a text file and interpret each line as a java.lang.String
val ds = sqlContext.read.text("/home/spark/1.6/lines").as[String]
val result = ds
.flatMap(_.split(" ")) // Split on whitespace
.filter(_ != "") // Filter empty words
.toDF() // Convert to DataFrame to perform aggregation / sorting
.groupBy($"value") // Count number of occurences of each word
.agg(count("*") as "numOccurances")
.orderBy($"numOccurances" desc) // Show most common words first

后面版本DataFrame会继承DataSet,DataFrame是面向Spark SQL的接口。
//DataSet,完全使用scala编程,不要切换到DataFrame

val wordCount =
ds.flatMap(_.split(" "))
.filter(_ != "")
.groupBy(_.toLowerCase()) // Instead of grouping on a column expression (i.e. $"value") we pass a lambda function
.count()

DataFrame和DataSet可以相互转化, df.as[ElementType] 这样可以把DataFrame转化为DataSet, ds.toDF() 这样可以把DataSet转化为DataFrame。

热心网友 时间:2022-04-09 04:31

RDD、DataFrame和DataSet是容易产生混淆的概念,必须对其相互之间对比,才可以知道其中异同。

RDD和DataFrame

RDD-DataFrame

上图直观地体现了DataFrame和RDD的区别。左侧的RDD[Person]虽然以Person为类型参数,但Spark框架本身不了解
Person类的内部结构。而右侧的DataFrame却提供了详细的结构信息,使得Spark
SQL可以清楚地知道该数据集中包含哪些列,每列的名称和类型各是什么。DataFrame多了数据的结构信息,即schema。RDD是分布式的
Java对象的集合。DataFrame是分布式的Row对象的集合。DataFrame除了提供了比RDD更丰富的算子以外,更重要的特点是提升执行效
率、减少数据读取以及执行计划的优化,比如filter下推、裁剪等。

提升执行效率

RDD
API是函数式的,强调不变性,在大部分场景下倾向于创建新对象而不是修改老对象。这一特点虽然带来了干净整洁的API,却也使得Spark应用程序在运
行期倾向于创建大量临时对象,对GC造成压力。在现有RDD
API的基础之上,我们固然可以利用mapPartitions方法来重载RDD单个分片内的数据创建方式,用复用可变对象的方式来减小对象分配和GC的
开销,但这牺牲了代码的可读性,而且要求开发者对Spark运行时机制有一定的了解,门槛较高。另一方面,Spark
SQL在框架内部已经在各种可能的情况下尽量重用对象,这样做虽然在内部会打破了不变性,但在将数据返回给用户时,还会重新转为不可变数据。利用
DataFrame API进行开发,可以免费地享受到这些优化效果。

减少数据读取

分析大数据,最快的方法就是 ——忽略它。这里的“忽略”并不是熟视无睹,而是根据查询条件进行恰当的剪枝。

上文讨论分区表时提到的分区剪 枝便是其中一种——当查询的过滤条件中涉及到分区列时,我们可以根据查询条件剪掉肯定不包含目标数据的分区目录,从而减少IO。

对于一些“智能”数据格 式,Spark
SQL还可以根据数据文件中附带的统计信息来进行剪枝。简单来说,在这类数据格式中,数据是分段保存的,每段数据都带有最大值、最小值、null值数量等

一些基本的统计信息。当统计信息表名某一数据段肯定不包括符合查询条件的目标数据时,该数据段就可以直接跳过(例如某整数列a某段的最大值为100,而查
询条件要求a > 200)。

此外,Spark SQL也可以充分利用RCFile、ORC、Parquet等列式存储格式的优势,仅扫描查询真正涉及的列,忽略其余列的数据。

执行优化

人口数据分析示例

为了说明查询优化,我们来看上图展示的人口数据分析的示例。图中构造了两个DataFrame,将它们join之后又做了一次filter操作。如
果原封不动地执行这个执行计划,最终的执行效率是不高的。因为join是一个代价较大的操作,也可能会产生一个较大的数据集。如果我们能将filter
下推到 join下方,先对DataFrame进行过滤,再join过滤后的较小的结果集,便可以有效缩短执行时间。而Spark
SQL的查询优化器正是这样做的。简而言之,逻辑查询计划优化就是一个利用基于关系代数的等价变换,将高成本的操作替换为低成本操作的过程。

得到的优化执行计划在转换成物 理执行计划的过程中,还可以根据具体的数据源的特性将过滤条件下推至数据源内。最右侧的物理执行计划中Filter之所以消失不见,就是因为溶入了用于执行最终的读取操作的表扫描节点内。

对于普通开发者而言,查询优化 器的意义在于,即便是经验并不丰富的程序员写出的次优的查询,也可以被尽量转换为高效的形式予以执行。

RDD和DataSet

DataSet以Catalyst逻辑执行计划表示,并且数据以编码的二进制形式被存储,不需要反序列化就可以执行sorting、shuffle等操作。
DataSet创立需要一个显式的Encoder,把对象序列化为二进制,可以把对象的scheme映射为SparkSQl类型,然而RDD依赖于运行时反射机制。

通过上面两点,DataSet的性能比RDD的要好很多。

DataFrame和DataSet

Dataset可以认为是DataFrame的一个特例,主要区别是Dataset每一个record存储的是一个强类型值而不是一个Row。因此具有如下三个特点:

DataSet可以在编译时检查类型

并且是面向对象的编程接口。用wordcount举例:
//DataFrame

// Load a text file and interpret each line as a java.lang.String
val ds = sqlContext.read.text("/home/spark/1.6/lines").as[String]
val result = ds
.flatMap(_.split(" ")) // Split on whitespace
.filter(_ != "") // Filter empty words
.toDF() // Convert to DataFrame to perform aggregation / sorting
.groupBy($"value") // Count number of occurences of each word
.agg(count("*") as "numOccurances")
.orderBy($"numOccurances" desc) // Show most common words first

后面版本DataFrame会继承DataSet,DataFrame是面向Spark SQL的接口。
//DataSet,完全使用scala编程,不要切换到DataFrame

val wordCount =
ds.flatMap(_.split(" "))
.filter(_ != "")
.groupBy(_.toLowerCase()) // Instead of grouping on a column expression (i.e. $"value") we pass a lambda function
.count()

DataFrame和DataSet可以相互转化, df.as[ElementType] 这样可以把DataFrame转化为DataSet, ds.toDF() 这样可以把DataSet转化为DataFrame。
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
瑞尼世家金鬼手表怎么样? 好友戴的瑞尼世家手表,很漂亮,想问下这个表值得选吗? win10系统怎么取消开机电脑win10系统的电脑怎样取消开机密码 win10电脑待机时间win10电脑自动待机怎么取消 win7系统锁屏怎么取消 win7取消电脑自动睡眠win7怎么取消电脑自动锁屏 电脑关闭锁屏win10win10电脑如何关闭自动锁屏 电脑怎么不锁屏电脑如何设置永不锁屏 儿童公园地址 怎么剑魂的技能这么少...都不厉害的呀?? 我在全民k歌里唱歌,录制完作品以后怎么只能听到原唱唱歌而听不到自己的声音 电脑进去显示cmd.exe 怎么办 cmd.exe在电脑什么地方能找到? OPPO手机唱歌的时候耳机里听不到自己的声音是为什么? 为什么在K房里唱歌听不到自己声音? 手机唱歌听不到自己的声音。 唱歌时听不到自己的声音??? 为什么全民k歌,唱歌听不到自己的声音? ...录制完作品以后怎么只能听到原唱唱歌而听不到自己的声音?_百度... 为什么全民k歌唱完歌听不到自己的声音??? 陌陌ktv唱歌听不到自己的声音 为什么用耳机唱歌的时候听不到自己的声音? 怎样充分借助互联网自学? 用互联网学语文的方法 如何有效利用互联网学语文 袋式过滤器和板框压力式过滤器的选择 硬塑料筐在帆布袋里侧翻会坏吗? 滤袋的组成和分类有哪些 用互联网学语文 学习互联网的作用? cmd.exe是什么鬼 在舞台上唱歌,自己的声音听不到或者很小怎么办? spark dataframe 字段可以有几种数据类型 电脑进程里老是出现好几十个cmd.exe进程 耳机唱歌听不到自己的声音 cmd.exe是什么 电脑开机出现cmd.exe cmd.exe是什么啊? python,爬虫,pandas的DataFrame处理后的数据,输出到文本后中间这些数据... cmd.exe有哪些用处??? 怎么取dataframe python 电脑一启动就显示管理员 cmd.exe python dataframe的换行符怎么处理 cmd.exe是什么文件,怎么打开 Dataframe里字段过长被截取怎么能显示完整的数据 cmd.exe是什么进程?可以删除吗? 电脑开机出现管理员:cmd.exe? python dataframe multiindex 有几层 cmd.exe文件的解决 开机自动运行cmd.exe