在大数据发挥更大价值的同时,深度学习可以为其做什么?
发布网友
发布时间:2022-04-28 14:06
我来回答
共1个回答
热心网友
时间:2022-06-18 22:57
深度学习是多层次的人工神经网络的建立和利用。在最简单的术语中,你可以把它看作是高度非线性的级联模型,例如多层规则和最后的逻辑回归。这是一个非常复杂的体系结构,最后的结果是分类(离散结果)或回归(连续结果)。
一般来说,这些模型需要有大数据的支持,并且需要对超参数(hyper parameters)、正则化等大量的精细调节。应用包括基于CNN(convolutional neural networks卷积神经网络)的计算机视觉和图像识别;自动翻译(基于NLP技术,例如长短期记忆模型)。
其实深度学习的基础理论其实在几十年前就有了,为什么一直没有发展起来呢?因为它受到两个条件的制约,一个是数据量,一个是机器的运算能力。
在数量比较小的情况下,传统的机器学习方法就能够取得较好的效果。但是随着数据量不断的增加,当达到某个临界值之后,传统机器学习方法的效果就不会再有提升了。而深度学习模型的效果则会随着数据量的显著增加而获得明显的提升。也就是说,深度学习方法能够最大限度地发挥出大数据的价值!所以大数据的发展促进了深度学习的崛起,而深度学习又放大了数据的价值,他们两个相互促进,相辅相成的。