发布网友 发布时间:2022-04-20 07:44
共1个回答
热心网友 时间:2022-07-12 02:46
美国数学本科生,研究生基础课程参考书目 第一学年 几何与拓扑: 1、James R. Munkres, Topology: 较新的拓扑学的教材适用于本科高年级或研究生一年级; 2、Basic Topology by Armstrong:本科生拓扑学教材; 3、Kelley, General Topology:一般拓扑学的经典教材,不过观点较老; 4、Willard, General Topology:一般拓扑学新的经典教材; 5、Glen Bredon, Topology and geometry:研究生一年级的拓扑、几何教材; 6、Introction to Topological Manifolds by John M. Lee:研究生一年级的拓扑、几何教材,是一本新书; 7、From calculus to cohomology by Madsen:很好的本科生代数拓扑、微分流形教材。 代数: 1、Abstract Algebra Dummit:最好的本科代数学参考书, 标准的研究生一年级代数教材; 2、Algebra Lang:标准的研究生一、二年级代数教材,难度很高, 适合作参考书; 3、Algebra Hungerford:标准的研究生一年级代数教材, 适合作参考书; 4、Algebra M,Artin:标准的本科生代数教材; 5、Advanced Modern Algebra by Rotman:较新的研究生代数教材,很全面; 6、Algebra:a graate course by Isaacs:较新的研究生代数教材; 7、Basic algebra Vol I&II by Jacobson:经典的代数学全面参考书,适合研究生参考。 分析基础: 1、Walter Rudin, Principles of mathematical analysis:本科数学分析的标准参考书; 2、Walter Rudin, Real and complex analysis:标准的研究生一年级分析教材; 3、Lars V. Ahlfors, Complex analysis:本科高年级和研究生一年级经典的复分析教材; 4、Functions of One Complex Variable I,J.B.Conway:研究生级别的单变量复分析经典; 5、Lang, Complex analysis:研究生级别的单变量复分析参考书; 6、Complex Analysis by Elias M. Stein:较新的研究生级别的单变量复分析教材; 7、Lang, Real and Functional analysis:研究生级别的分析参考书; 8、Royden, Real analysis:标准的研究生一年级实分析教材; 9、Folland, Real analysis:标准的研究生一年级实分析教材。 第二学年 代数: 1、Commutative ring theory, by H. Matsumura:较新的研究生交换代数标准教材; 2、Commutative Algebra I&II by Oscar Zariski , Pierre Samuel:经典的交换代数参考书; 3、An introction to Commutative Algebra by Atiyah:标准的交换代数入门教材; 4、An introction to homological algebra ,by weibel:较新的研究生二年级同调代数教材; 5、A Course in Homological Algebra by P.J.Hilton,U.Stammbach: 经典全面的同调代数参考书; 6、Homological Algebra by Cartan:经典的同调代数参考书; 7、Methods of Homological Algebra by Sergei I. Gelfand, Yuri I. Manin:高级、经典的同调代数参考书; 8、Homology by Saunders Mac Lane:经典的同调代数系统介绍; 9、Commutative Algebra with a view toward Algebraic Geometry by Eisenbud:高级的代数几何、交换代数的参考书, 最新的交换代数全面参考。 代数拓扑: 1、Algebraic Topology, A. Hatcher:最新的研究生代数拓扑标准教材; 2、Spaniers “Algebraic Topology”:经典的代数拓扑参考书; 3、Differential forms in algebraic topology, by Raoul Bott and Loring W. Tu:研究生代数拓扑标准教材; 4、Massey, A basic course in Algebraic topology:经典的研究生代数拓扑教材; 5、Fulton , Algebraic topology:a first course: 很好本科生高年级和研究生一年级的代数拓扑参考书; 6、Glen Bredon, Topology and geometry:标准的研究生代数拓扑教材, 有相当篇幅讲述光滑流形; 7、Algebraic Topology Homology and Homotopy:高级、经典的代数拓扑参考书; 8、A Concise Course in Algebraic Topology by J.P.May:研究生代数拓扑的入门教材,覆盖范围较广; 9、Elements of Homotopy Theory by G.W. Whitehead:高级、经典的代数拓扑参考书。 实分析、泛函分析: 1、Royden, Real analysis:标准研究生分析教材; 2、Walter Rudin, Real and complex analysis:标准研究生分析教材; 3、Halmos,”Measure Theory”:经典的研究生实分析教材,适合作参考书; 4、Walter Rudin, Functional analysis:标准的研究生泛函分析教材; 5、Conway,A course of Functional analysis:标准的研究生泛函分析教材; 6、Folland, Real analysis:标准研究生实分析教材; 7、Functional Analysis by Lax:高级的研究生泛函分析教材; 8、Functional Analysis by Yoshida:高级的研究生泛函分析参考书; 9、Measure Theory, Donald L. Cohn:经典的测度论参考书。 微分拓扑 李群、李代数 1、Hirsch, Differential topology:标准的研究生微分拓扑教材,有相当难度; 2、Lang, Differential and Riemannian manifolds:研究生微分流形的参考书,难度较高; 3、Warner,Foundations of Differentiable manifolds and Lie groups:标准研究生微分流形教材,有相当的篇幅讲述李群; 4、Representation theory: a first course, by W. Fulton and J. Harris:李群及其表示论标准教材; 5、Lie groups and algebraic groups, by A. L. Onishchik, E. B. Vinberg:李群的参考书; 6、Lectures on Lie Groups W.Y.Hsiang:李群的参考书; 7、Introction to Smooth Manifolds by John M. Lee:较新的关于光滑流形的标准教材; 8、Lie Groups, Lie Algebras, and Their Representation by V.S. Varadarajan:最重要的李群、李代数参考书; 9、Humphreys, Introction to Lie Algebras and Representation Theory , SpringerVerlag, GTM9:标准的李代数入门教材。 第三学年 微分几何: 1、Peter Petersen, Riemannian Geometry:标准的黎曼几何教材; 2、Riemannian Manifolds: An Introction to Curvature by John M. Lee:最新的黎曼几何教材; 3、doCarmo, Riemannian Geometry.:标准的黎曼几何教材; 4、M. Spivak, A Comprehensive Introction to Differential Geometry I—V:全面的微分几何经典,适合作参考书; 5、Helgason , Differential Geometry,Lie groups,and symmetric spaces:标准的微分几何教材; 6、Lang, Fundamentals of Differential Geometry:最新的微分几何教材,很适合作参考书; 7、kobayashi/nomizu, Foundations of Differential Geometry:经典的微分几何参考书; 8、Boothby,Introction to Differentiable manifolds and Riemannian Geometry:标准的微分几何入门教材,主要讲述微分流形; 9、Riemannian Geometry I.Chavel:经典的黎曼几何参考书; 10、Dubrovin, Fomenko, Novikov “Modern geometry-methods and applications”Vol 1—3:经典的现代几何学参考书。 代数几何: 1、Harris,Algebraic Geometry: a first course:代数几何的入门教材; 2、Algebraic Geometry Robin Hartshorne :经典的代数几何教材,难度很高; 3、Basic Algebraic Geometry 1&2 2nd ed. I.R.Shafarevich.:非常好的代数几何入门教材; 4、Principles of Algebraic Geometry by giffiths/harris:全面、经典的代数几何参考书, 偏复代数几何; 5、Commutative Algebra with a view toward Algebraic Geometry by Eisenbud:高级的代数几何、交换代数的参考书, 最新的交换代数全面参考; 6、The Geometry of Schemes by Eisenbud:很好的研究生代数几何入门教材; 7、The Red Book of Varieties and Schemes by Mumford:标准的研究生代数几何入门教材; 8、Algebraic Geometry I : Complex Projective Varieties by David Mumford:复代数几何的经典。 调和分析 偏微分方程 1、An Introction to Harmonic Analysis,Third Edition Yitzhak Katznelson:调和分析的标准教材,很经典; 2、Evans, Partial differential equations:偏微分方程的经典教材; 3、Aleksei.A.Dezin,Partial differential equations,Springer-Verlag: 偏微分方程的参考书; 4、L. Hormander “Linear Partial Differential Operators, ” I&II:偏微分方程的经典参考书; 5、A Course in Abstract Harmonic Analysis by Folland:高级的研究生调和分析教材; 6、Abstract Harmonic Analysis by Ross Hewitt:抽象调和分析的经典参考书; 7、Harmonic Analysis by Elias M. Stein:标准的研究生调和分析教材; 8、Elliptic Partial Differential Equations of Second Order by David Gilbarg:偏微分方程的经典参考书; 9、Partial Differential Equations ,by Jeffrey Rauch:标准的研究生偏微分方程教材。 复分析 多复分析导论 1、Functions of One Complex Variable II,J.B.Conway:单复变的经典教材,第二卷较深入; 2、Lectures on Riemann Surfaces O.Forster:黎曼曲面的参考书; 3、Compact riemann surfaces Jost:黎曼曲面的参考书; 4、Compact riemann surfaces Narasimhan:黎曼曲面的参考书; 5、Hormander ” An introction to Complex Analysis in Several Variables”:多复变的标准入门教材; 6、Riemann surfaces , Lang:黎曼曲面的参考书; 7、Riemann Surfaces by Hershel M. Farkas:标准的研究生黎曼曲面教材; 8、Function Theory of Several Complex Variables by Steven G. Krantz:高级的研究生多复变参考书; 9、Complex Analysis: The Geometric Viewpoint by Steven G. Krantz:高级的研究生复分析参考书。 专业方向选修课: 1、多复分析;2、复几何;3、几何分析;4、抽象调和分析; 5、代数几何;6、代数数论;7、微分几何;8、代数群、 李代数与量子群;9、泛函分析与算子代数;10、数学物理; 11、概率理论;12、动力系统与遍历理论;13、泛代数。 数学基础: 1、halmos ,native set theory; 2、fraenkel ,abstract set theory; 3、ebbinghaus ,mathematical logic; 4、enderton ,a mathematical introction to logic; 5、landau, foundations of analysis; 6、maclane ,categories for working mathematican。应该在核心课程学习的过程中穿插选修 假设本科应有的水平 分析: Walter Rudin, Principles of mathematical analysis; Apostol , mathematical analysis; M.spivak , calculus on manifolds; Munkres ,analysis on manifolds; Kolmogorov/fomin , introctory real analysis; Arnold ,ordinary differential equations。 代数: linear algebra by Stephen H. Friedberg; linear algebra by hoffman; linear algebra done right by Axler; advanced linear algebra by Roman; algebra ,artin; a first course in abstract algebra by rotman。 几何: do carmo, differential geometry of curves and surfaces; Differential topology by Pollack; Hilbert ,foundations of geometry; James R. Munkres, Topology。