发布网友 发布时间:2023-03-26 05:50
共1个回答
热心网友 时间:2023-04-27 20:52
结构方程模型是:社会科学研究中的一个非常好的方法。
该方法在20世纪80年代就已经成熟,可惜国内了解的人并不多。在社会科学以及经济、市场、管理等研究领域,有时需处理多个原因、多个结果的关系,或者会碰到不可直接观测的变量(即潜变量),这些都是传统的统计方法不能很好解决的问题。
20世纪80年代以来,结构方程模型迅速发展,弥补了传统统计方法的不足,成为多元数据分析的重要工具。线性相关分析:线性相关分析指出两个随机变量之间的统计联系。两个变量地位平等,没有因变量和自变量之分。因此相关系数不能反映单指标与总体之间的因果关系。
结构方程模型分析:结构方程模型是一种建立、估计和检验因果关系模型的方法。模型中既包含有可观测的显在变量,也可能包含无法直接观测的潜在变量。清晰分析单项指标对总体的作用和单项指标间的相互关系。
简单而言,与传统的回归分析不同,结构方程分析能同时处理多个因变量,并可比较及评价不同的理论模型。与传统的探索性因子分析不同,在结构方程模型中,我们可以提出一个特定的因子结构,并检验它是否吻合数据。
结构方程模型的优点:
1、容许自变量和因变量含测量误差,态度、行为等变量,往往含有误差,也不能简单地用单一指标测量。结构方程分析容许自变量和因变量均含测量误差。变量也可用多个指标测量。用传统方法计算的潜变量间相关系数,与用结构方程分析计算的潜变量间相关系数,可能相差很大。
2、估计整个模型的拟合程度,在传统路径分析中,我们只估计每一路径的强弱。在结构方程分析中,除了上述参数的估计外,我们还可以计算不同模型对同一个样本数据的整体拟合程度,从而判断哪一个模型更接近数据所呈现的关系。