发布网友 发布时间:2022-04-23 15:36
共3个回答
热心网友 时间:2023-07-21 20:59
许多现代物理化学实验方法可用来研究催化剂(见催化)的表面结构、组成、活性中心种类、活性组分的价态和所处的化学环境、吸附态的构型和反应活性等。X射线的波长与晶体原子间距处于同一数量级,当它照射到固体粉末催化剂中的微小晶粒时,将产生布喇格衍射效应。利用该效应,可以测定催化剂的晶体结构,包括催化剂的宏观对称类型即晶系和点群,以及晶胞中的原子数或分子数、微观点阵类型和空间群。利用衍射峰半峰高的增宽现象或小角散射效应,可测定不同晶轴方向的晶粒和无取向晶粒的平均直径,从而获得催化剂晶粒形状的信息。用某元素的稳定同位素(如H、O、C和N)或放射性同位素 (如C、H)来标记所研究的化学物质,从而获得与反应机理和速率有关信息的方法。分为同位素示踪、同位素效应和同位素交换等法。1931年末美国的H.C.尤里发现氘之后不久,德国的A.法卡斯和L.法卡斯就对各种氢化物与氘的交换进行研究,这是同位素交换在催化研究中应用的最早实例。其主要应用有:研究催化反应中间物或催化剂表面化学吸附分子的数量和性质及催化剂表面特性,如助催化剂分布等;测定催化剂的部分原子是否参与反应并成为产物分子的一部分;③解释催化反应微观机理并确定反应速率的控制步骤。例如,合成氨反应可利用氢和氮的同位素(D和N)进行研究,在铁催化剂上可观察到:H+D─→2HD反应即使在液态空气温度下也易于发生;NH+ND─→NHD+NHD反应在室温下就能稳定地进行;而N+N─→2NN)反应则须在合成氨的温度(约 400℃)下才能发生。利用同位素示踪得出结论:合成氨反应中氮分子活化是反应速率的控制步骤。
热心网友 时间:2023-07-21 20:59
特别是在工业上有很重要的意义,例如加氢,脱氢氧化裂化等等生产过程都是建立在多相催化基础上的。多相催化相较均相催化更为复杂,其比较常见的催化剂包括金属催化剂,氧化物催化剂和配合物催化剂。 金属催化剂是最早用于实际生产的一类催化剂,主要用于加氢和脱氢反应,也有一部分贵金属,由于对氧的吸附不太强而本身又不易被氧化,所以常用于选择性 催化氧化反应。氧化物催化剂由于其表面有多种多样的活性部位,研究更为复杂。 由于多相催化剂的复杂性和不均匀性,在解释其活性原因,以及提出有充分根据的催化机理方面就遇到困难。密度泛函理论(DFD局域近似在处理一般金属和半导体的电子能带和有关物理性质方面取得非常大的成功,因此在近年来得到迅速发展和广泛的应用,大 量文献和实验数据表明计算结果和实验数据有很好的吻合,所以本文采用的都是 DFT的方法。在以前的金属表面模拟研究中,所使用的都是原子簇模型。在这种情况下,金属基底都被固定在和体相一样的结构,而忽略了金属表面的驰豫以及 计算交换相关能对金属基底的影响,通过计算比较发现使用考虑了驰豫及交换相 关能近似的模型的计算结果更加接近实验值。
热心网友 时间:2023-07-21 21:00
催化循环包括扩散、化学吸附、表面反应、脱附和反向扩散五个步骤。化学吸附是多相催化过程中的一个重要环节。而且,反应物分子在催化剂表面上的吸附地,决定着反应物分子被活化的程序以及催化过程的性质,例如活性和选择性。因此研究反应物分子或探针分子在催化剂表面上的吸附,对于阐明反应物分子与催化剂表面相互作用的性质、催化作用的原理以及催化反应的机理具有十分重要的意义。化学吸附是一种界面现象,它与催化、腐蚀、黏结等有密切的关系,对它的研究具有重要的科学和实用价值。多年来,人们采用多种现代谱学技术并与常规的表征手段结合,从分子水平考察化学吸附层的表面结构、吸附态以及分子与表面作用的能量关系,获得了广泛深入的研究结果,形成表面科学这一重要的学术领域,化学吸附也就成为重要的组成部分。