发布网友 发布时间:2022-09-14 11:03
共3个回答
热心网友 时间:2024-12-11 23:11
到了十九世纪二十年代,*喀山大学教授罗巴切夫斯基在证明第五公设的过程中,他走了另一条路子。他提出了一个和欧式平行公理相矛盾的命题,用它来代替第五公设,然罗巴切夫斯基后与欧式几何的前四个公设结合成一个公理系统,展开一系列的推理。他认为如果这个系统为基础的推理中出现矛盾,就等于证明了第五公设。我们知道,这其实就是数学中的反证法。但是,在他极为细致深入的推理过程中,得出了一个又一个在直觉上匪夷所思,但在逻辑上毫无矛盾的命题。最后,罗巴切夫斯基得出两个重要的结论:第一,第五公设不能被证明。第二,在新的公理体系中展开的一连串推理,得到了一系列在逻辑上无矛盾的新的定理,并形成了新的理论。这个理论像欧式几何一样是完善的、严密的几何学。这种几何学被称为罗巴切夫斯基几何,简称罗氏几何。这是第一个被提出的非欧几何学。从罗巴切夫斯基创立的非欧几何学中,可以得出一个极为重要的、具有普遍意义的结论:逻辑上互不矛盾的一组假设都有可能提供一种几何学。
热心网友 时间:2024-12-11 23:11
罗巴切夫斯基几何的公理系统和欧几里得几何不同的地方仅仅是把欧式几何平行公理用"在平面内,从直线外一点,至少可以做两条直线和这条直线平行"来代替,其他公理基本相同。由于平行公理不同,经过演绎推理却引出了一连串和欧式几何内容不同的新的几何命题。
我们知道,罗氏几何除了一个平行公理之外采用了欧式几何的一切公理。因此,凡是不涉及到平行公理的几何命题,在欧式几何中如果是正确的,在罗氏几何中也同样是正确的。在欧式几何中,凡涉及到平行公理的命题,在罗氏几何中都不成立,他们都相应地含有新的意义。
热心网友 时间:2024-12-11 23:12
由于证明非欧几何是一门大的数学分支,一般来讲,他有广义、狭义、通常意义这三个方面的不同含义。所谓广义式泛指一切和欧几里的几何学不同的几何学,狭义的非欧几何只是指罗式几何来说的,至于通常意义的非欧几何,就是指罗式几何和黎曼几何这两种几何。欧几里得的《几何原本》提出了五条公设,长期以来,数学家们发现第五公设和前四个公设比较起来,显得文字叙述冗长,而且也不那么显而易见。欧几里得的《几何原本》提出了五条公设,头四条公设分别为:
第一:由任意一点到任意一点可作直线。第二:一条有限直线可以继续延长。第三:以任意点为心及任意的距离可以画圆。第四.:凡直角都相等。第五条公设说:同一平面内一条直线和另外两条直线相交,若在某一侧的两个内角的和小于两直角,则这两直线经无限延长后在这一侧相交。长期以来,数学家们发现第五公设和前四个公设比较起来,显得文字叙述冗长,而且也不那么显而易见。有些数学家还注意到欧几里得在《几何原本》一书中直到第二十九个命题中才用到,而且以后再也没有使用。也就是说,在《几何原本》中可以不依靠第五公设而推出前二十八个命题。因此,一些数学家提出,第五公设能不能不作为公设,而作为定理?能不能依靠前四个公设来证明第五公设?这就是几何发展史上最著名的,争论了长达两千多年的关于"平行线理论"的讨论。