柯西不等式构造二次函数证明
发布网友
发布时间:2022-04-22 23:09
我来回答
共1个回答
热心网友
时间:2022-07-14 05:13
应该是求证:[a(1)+a(2)+a(3)+······+a(n)][1/a(1)+1/a(2)+1/a(3)+······+1a(n)]≧n^2.
[证明]
构造二次函数:y=(√kx+1/√k)^2=kx^2+2x+1/k,其中k是正数.
显然有:kx^2+2x+1/k≧0.
依次令k=a(1)、a(2)、a(3)、a(4)、······、a(n),得:
a(1)x^2+2x+1/a(1)≧0,
a(2)x^2+2x+1/a(2)≧0,
a(3)x^2+2x+1/a(3)≧0,
······
a(n)x^2+2x+1/a(n)≧0.
将以上n个不等式左右分别相加,得:
[a(1)+a(2)+a(3)+······+a(n)]x^2+2nx+[1/a(1)+1/a(2)+1/a(3)+······+1a(n)]≧0.
令f(x)=[a(1)+a(2)+a(3)+······+a(n)]x^2+2nx+[1/a(1)+1/a(2)+1/a(3)+······+1a(n)]
∵k>0,∴a(1)+a(2)+a(3)+······+a(n)>0,
∴f(x)是一条开口向上的抛物线,
∴要满足f(x)≧0,就需要:
(2n)^2-4[a(1)+a(2)+a(3)+······+a(n)][1/a(1)+1/a(2)+1/a(3)+······+1a(n)]≦0,
∴[a(1)+a(2)+a(3)+······+a(n)][1/a(1)+1/a(2)+1/a(3)+······+1a(n)]≧n^2.
注:括号“( )”里的数字是下标.