完整的解析一下作差比较法
发布网友
发布时间:2022-08-20 00:22
我来回答
共1个回答
热心网友
时间:2023-05-05 08:11
不等式的证明
1.比较法
作差作商后的式子变形,判断正负或与1比较大小
作差比较法-----要证明a>b,只要证明a-b>0.
作商比较法---已知a,b都是正数,要证明a>b,只要证明a/b>1
例1 求证:x2+3>3x
证明:∵(x2+3)-3x=x2-3x+()2-()2+3
=+≥>0
∴ x2+3>3x
例2 已知a,b R+,并且a≠b,求证
a5+b5>a3b2+a2b3
证明:(a5+b5)-(a3b2+a2b3)=(a5-a3b2)-(a2b3-b5)
=a3(a2-b2)-b3(a2-b2)=(a2-b2)(a3-b3)
=(a+b)(a-b)2(a2+ab+b2)
∵ a,b R+
∴ a+b>0,a2+ab+b2>0
又因为a≠b,所以(a-b)2>0
∴ (a+b)(a-b)2(a2+ab+b2)>0
即 (a5+b5)-(a3b2+a2b3)>0
∴ a5+b5>a3b2+a2b3
例3 已知a,b R+,求证:aabb≥abba
证明:=
∵a,b R+,当a>b时,>1,a-b>0,>1;
当a≤b时,≤1,a-b≤0,≥1.
∴ ≥1,即aabb≥abba
综合法
了解算术平均数和几何平均数的概念,能用平均不等式证明其它一些不等式
定理1 如果a,b R,那么a2+b2≥2ab(当且仅当a=b时取"="号)
证明:a2+b2-2ab=(a-b)2≥0
当且仅当a=b时取等号.所以
a2+b2≥2ab(当且仅当a=b时取等号).
定理2 如果a,b,c R+,那么a3+b3+c3≥3abc(当且仅当a=b=c时取"="号)
证明:∵a3+b3+c3-3abc
=(a+b)3+c3-3a2b-3ab2-3abc
=(a+b+c)(a2+b2+c2-ab-bc-ac)
=(a+b+c)[(a-b)2+(b-c)2+(a-c)2]≥0
∴ a3+b3+c3≥3abc,
很明显,当且仅当a=b=c时取等号.
例1 已知a,b,c是不全等的正数,求证
a(a2+b2)+b(a2+c2)+c(a2+b2)>6abc.
放缩法
这也是分析法的一种特殊情况,它的根据是不等式的传递性—
a≤b,b≤c,则a≤c,只要证明"大于或等于a的"b≤c就行了.
例,证明当k是大于1的整数时,
我们可以用放缩法的一支——"逐步放*",证明如下:
分析法
从要证明的不等式出发,寻找使这个不等式成立的某一"充分的"条件,为此逐步往前追溯(执果索因),一直追溯到已知条件或一些真命题为止.例如要证a2+b2≥2ab我们通过分析知道,使a2+b2≥2ab成立的某一"充分的"条件是a2-2ab+b2≥0,即(a-b)2≥0就行了.由于是真命题,所以a2+b2≥2ab成立.分析法的证明过程表现为一连串的"要证……,只要证……",最后推至已知条件或真命题
例 求证:
证明:
构造图形证明不等式
例:已知a,b,c都是正数,求证:
+>
分析与证明:观察原不等式中含有a2+ab+b2即a2+b2+ab的形式,联想到余弦定理:c2=a2+b2-2ab CosC,为了得到a2+b2+ab的形式,只要C=120°,
这样:可以看成a,b为邻边,夹角为120°的的三角形的第三边
可以看成b,c为邻边,夹角为120°的的三角形的第三边
可以看成a,c为邻边,夹角为120°的的三角形的第三边
构造图形如下,
AB=,
BC=,
AC=
显然AB+BC>AC,故原不等式成立.
数形结合法
数形结合是指通过数与形之间的对应转化来解决问题.数量关系如果借助于图形性质,可以使许多抽象概念和关系直观而形象,有利于解题途径的探求,这通常为以形助数;而有些涉及图形的问题如能转化为数量关系的研究,又可获得简捷而一般化的解法,即所谓的以数解形.数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合,通过对图形的认识,数形的转化,可以培养思维的灵活性,形象性.通过数形结合,可以使复杂问题简单化,抽象问题具体化.
例.证明,当x>5时,≤x-2
令y1=,y2=x-2,从而原不等式的解集就是使函数y1>y2的x的取值范围.在同一坐标系中分别作出两个函数的图象.设它们交点的横坐标是x0,则=x0-2>0.解之,得x0=5或x0=1(舍).根据图形,很显然成立.
反证法
先假定要证不等式的反面成立,然后推出与已知条件(或已知真命题)和矛盾的结论,从而断定反证假定错误,因而要证不等式成立.
穷举法
对要证不等式按已知条件分成各种情况,加以证明(防止重复或遗漏某一可能情况).
注意:在证明不等式时,应灵活运用上述方法,并可通过运用多种方法来提高自己的思维能力.
完整的解析一下作差比较法
作商比较法---已知a,b都是正数,要证明a>b,只要证明a/b>1 例1 求证:x2+3>3x 证明:∵(x2+3)-3x=x2-3x+()2-()2+3 =+≥>0 ∴ x2+3>3x 例2 已知a,b R+,并且a≠b,求证 a5+b5>a3b2+a2b3 证明:(a5+b5)-(a3b2+a2b3)=(a5-a3b2)-(a2b3-b5)=a3(a2-b2)-b3(a2...
高中数学作差法比较大小
解析如下:例题 比较两个实数大小的方法作差法:步骤:①作两个数的差 ②比较差与0的大小③得出结论 这种利用作差的方法, 将两个数或两个式子比大小转化为差值与 0 的关系。是比较大小中非 常重要的方法,一定要记得掌握哦。
怎么用作差法、作商法、倒数比较法 比较大小
做差法:a-b与0比较,若大于0,则a大,小于0,则b大,等于0,等大 做商法:a/b与1比较,大于1则a大,小于1则b大,等于1则等大 倒数法:比如说a和b是分数,我赋个值,设a=1/9,b=1/8,这样你比较好理解,然后你就可以取倒数,1/a与1/b比较就应该是9和8,但是要注意倒数大...
七年级下数学,作差比较法
所谓的作差比较法,就是把两个需要比较大小的式子作差,再看他们的结果的情况,这时肯定会出现3中情况,大于0,等于0,小于0,大于0代表前面的大于后面的,等于0代表两者相等,小于0代表前面的小于后面的。
作差法比较大小的步骤
做差法比较大小的步骤,首先要两个数进行减法,然后进行计算,看是大于0,还是小于0。如果是大于0的话,那么第1个数比较大。如果是小于0的话,那么第2个数比较大。
怎么用作差法、作商法、倒数比较法 比较大小
做差法:a-b与0比较,若大于0,则a大,小于0,则b大,等于0,等大 做商法:a/b与1比较,大于1则a大,小于1则b大,等于1则等大 倒数法:比如说a和b是分数,我赋个值,设a=1/9,b=1/8,这样你比较好理解,然后你就可以取倒数,1/a与1/b比较就应该是9和8,但是要注意倒数大...
七年级下数学,作差比较法
当两式A、B做差 就与0相比 如果大于0 那么A大于B 如果等于0 A等于B 如果小于0 那么A小于B比如:已知x1<x2,求证x1立方小于x2立方 x1^3-x2^3=(x1-x2)(x1^2+x1x2+x2^2)若x1 x2同号(x1^2+x1x2+x2^2)>0 x1-x2<0所以x1^3<x2^3 若x1 x2异号 x1<0 x2>0 x1*x1...
作差法比较大小
作差法的基本思想是通过计算两个数的差,然后根据差的符号来判断两个数的大小关系。具体步骤如下:写出两个数的差,即a?b(假设我们要比较a和b的大小)。化简这个差,尽量将其化为最简形式。根据差的符号判断a和b的大小关系:a?b>0,则a>b;a?b=0,则a=b;a?b<0,则a...
作差(和)比较法怎么做
A式减B式,若A-B>0,A>B 若A-B<0,A<B 若A-B=0,A=B 作和法 若A+B>0,A>0B≥0;A≥0B≥0≥;A<0,B>A>0 若A+B<0(同上)若A+B=0,A=B=0;A=-B
不等式作差法比较大小的步骤
1.将不等式两边的函数做差,构造出一个新函数,而在这个新函数的定义域就是已知条件中x的取值范围(定义域有时会存在一点偏差)2.对新函数进行求导,根据函数的单调性,求出新函数的最大值或者是最小值,然后函数整体大于最小值,或函数整体小于最大值.3.带入最大值或最小值,求出不等式,然后...