椭圆的参数方程原理
发布网友
发布时间:2022-04-22 21:35
我来回答
共2个回答
热心网友
时间:2023-08-06 12:24
椭圆的参数方程:
中心点为(h,k),主轴平行于x轴时,
标准方程
高中课本在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程中的“标准”指的是中心在原点,对称轴为坐标轴。
F点在X轴(2张)
椭圆的标准方程有两种,取决于焦点所在的坐标轴:
1)焦点在X轴时,标准方程为:
2)焦点在Y轴时,标准方程为:
椭圆上任意一点到F1,F2距离的和为2a,F1,F2之间的距离为2c。而公式中的b²=a²-c²。b是为了书写方便设定的参数。
又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx²+ny²=1(m>0,n>0,m≠n)。即标准方程的统一形式。
椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ
标准形式的椭圆在(x0,y0)点的切线就是 :xx0/a²+yy0/b²=1。椭圆切线的斜率是:-b²x0/a²y0,这个可以通过复杂的代数计算得到。
热心网友
时间:2023-08-06 12:24
供参考。