发布网友 发布时间:2022-04-22 23:53
共1个回答
热心网友 时间:2023-10-08 23:59
鏁板垪{an}镄勫墠n椤瑰拰Sn=n虏-7n-8,姹倇an}镄勯当n≥2时,an=Sn-Sn-1=(2an-1)-(2an-1-1)=2an-2an-1,即 an an-1 =2…(3分)∴数列{an}是以a1=1为首项,2为公比的等比数列,∴an=2n-1,Sn=2n-1…(5分)设{bn}的公差为d,b1=a1=1,b4=1+3d=7,∴d=2 ∴bn=1+(n-1)×2=2n-1…(8分)(2)cn= 1 bnbn+1 = 1 (...
已知数列{an}的前n项和Sn,满足an+Sn=2n(1)证明数列{an -2)为等比数列...[an-2]:[a(n-1)-2 ] = { [a(n-1)+2]/2 - 2 }/[a(n-1)-2] = 1/2 所以{an-2}等比。{an-2}={-1,-1/2, -1/4, -1/8, ...} an=2-1/(2^(n-1))
已知数列{an}的前n项和Sn满足:Sn+an=n(n=1,2,3…).(1)求...解答:解:(1)由题可知:Sn+an=n,① Sn+1+an+1=n+1,② ②-①可得2an+1-an=1 即an+1-1= 1 2 (an-1),又a1-1=- 1 2 ,∴数列{an-1是以- 1 2 为首项,以 1 2 为公比的等比数列.(2)由(1)可得an=1-(1 2 )n,∴bn=(2-n)(an-1)= n-2 2n ,由bn+1-bn= ...
设数列{an}的前n项和为Sn,a1=1,Sn=nan-2n(n-1).(1)求数列{an}的通项公...回答:常规题an=sn-sn-1可求得公差。
数列{an}的前n项和为Sn,满足Sn=n2+2n.等比数列{bn}满足:b1=...解答:(1)证明:∵数列{an}的前n项和为Sn,满足Sn=n2+2n,∴n=1时,a1=S1=1+2=3,…(2分)n≥2且n∈N*时,an=Sn-Sn-1=(n2+2n)-[(n-1)2+2(n-1)]=2n+1 经检验a1亦满足an=2n+1,∴an=2n+1(n∈N*)…(5分)∴an+1-an=[2(n+1)+1]-(2n+1)=2为常数 ∴{an}为...
已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足...(1)由已知Sn=n2,得a1=S1=1 当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1 所以an=2n-1(n∈N*)由已知,b1=a1=1 设等比数列{bn}的公比为q,由2b3=b4得2q2=q3,所以q=2 所以bn=2n-1 (2)设数列{anbn}的前n项和为Tn,则Tn=1×1+3×2+5×22++(2n-1...
已知数列{an}的前n项和Sn=2n平方(n属于N*),等比数列{bn}满足:a1=b1,b...S(n-1)=2(n-1)^2 n>=2 an=Sn-S(n-1)=4n-2 n=1也成立 所以an=4n-2 d=4 b1=a1=2 b2(a3-a2)=b1*(an-an-2)d*b2=2d*b1 q=2 bn=2^n cn=an/bn=(2n-1)/2^(n-1)Sn=1/2^0+3/2^1+5/2^2+……+(2n-1)/2^(n-1)Sn/2= 1/2^1+3/2^2+...
已知数列{an}的前n项和为Sn,且Sn=2an-n(n∈N*)1.求证数列{an+1}是等比...sn=2an-n s =2a -2n+1 sn-s =an=2an-2a -1 an+1=2a +2 s =2a -n-1 s -sn=a =2a -2an-1 a +1=2an+2 (an+1)/(a +1)=(2a +2)/(2an+2)=(a +1)/(an+1)所以数列{an+1}是等比数列 设Bn=b1+b2+b3+...+bn=log2(a1+1)+log2(a2+1)+log2(a3+1)+...
设数列{an}的前n项和为Sn,a1=1,an=Snn+2 (n-1)(n∈N*).(1)求证:数列{...(1)证明:由an=Snn+2(n-1),得Sn=nan-2n(n-1)(n∈N*).当n≥2时,an=Sn-Sn-1=nan-(n-1)an-1-4(n-1),即an-an-1=4,故数列{an}是以1为首项,以4为公差的等差数列.于是,an=4n-3,Sn=(a1+an)n2=2n2-n (n∈N*);(2)解:由Sn=nan-2n(n-1),...
1.设数列{an}的前n项和为Sn,且Sn=n的平方+2n-1,试判断数列{an}是否...an-a(n-1)=6n-1-6n+7=6 所以{an}是等差数列 3、(1)证明:Sn=n^2+2n S(n-1)=(n-1)^2+2(n-1)=n^2-2n+1+2n-2=n^2-1 an=Sn-S(n-1)=n^2+2n-n^2+1=2n+1 a(n-1)=2(n-1)+1=2n-2+1=2n-1 an-a(n-1)=2n+1-2n+1=2 所以{an}是等差数列 (2)由100...