发布网友 发布时间:2022-09-15 19:25
共1个回答
热心网友 时间:2023-10-09 21:13
在同一平面内,两条直线的位置关系有两种:平行、相交。在空间中两条直线的位置关系有三种:平行、相交、异面。
1.同旁内角互补,两直线平行。
2.内错角相等,两直线平行。
3.同位角相等,两直线平行。
4.在同一平面内,垂直于同一条直线的两条直线互相平行。
5.平行于同一条直线的两条直线互相平行。
在同一平面内,如果两条直线都与一条直线平行,那么这两条直线(相互平行)。
已知:直线AB∥EF,CD∥EF,求证:AB∥CD。
证明:假设AB与CD不平行,则直线AB与CD相交。
设它们的交点为P,于是经过点P就有两条直线(AB、CD)都和直线EF平行。
这就与经过直线外一点有且只有一条直线和已知直线平行相矛盾。
所以假设不能成立,故AB∥CD。