发布网友 发布时间:2022-04-23 01:21
共3个回答
热心网友 时间:2023-10-09 23:22
如下:
首先,由X1=a>0及Xn+1=1/2(Xn+1/Xn),得所有Xn>0(n为自然数)。(由这个公式,可知Xn+1与Xn符合相同,而X1大于0,因此所有{Xn}中元素均大于0。这个是利用下面不等式的基础)
其次证明有界:Xn+1=1/2(Xn+1/Xn)>=1/2*2*√(Xn*1/Xn)=1( 利用a+b>=2√ab)。
因此Xn>=1(n>1)由单调有输准则,数列{Xn}收敛,由上可知,其极限=1。
任一项的绝对值都小于等于某一 正数的数列。有界数列是指 数列中的每一项均不超过一个固定的区间,其中分上界和下界。假设存在定值a,任意n有{An(n为下角标,下同)=B,称数列{An}有下界B,如果同时存在A、B时的数列{An}的值在区间[A,B]内,数列有界。
单调有界定理:若数列{an}递增有上界(递减有下界),则数列{an}收敛,即单调有界数列必有极限。具体来说,如果一个数列单调递增且有上界,或单调递减且有下界,则该数列收敛。
热心网友 时间:2023-10-09 23:23
首先,由X1=a>0及Xn+1=1/2(Xn+1/Xn),得所有Xn>0(n为自然数)。(由这个公式,可知Xn+1与Xn符合相同,而X1大于0,因此所有{Xn}中元素均大于0。这个是利用下面不等式的基础)热心网友 时间:2023-10-09 23:23
证明: x1=a>0 (我认为此处应该a>1)