问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

这样的寒假作业答案有木有,,,急!!

发布网友 发布时间:2022-09-19 21:56

我来回答

3个回答

热心网友 时间:2023-10-31 12:43

2013年湖南省初中毕业学业考试标准
数学
一、考试指导思想
初中毕业数学学业考试是依据《全日制义务教育数学课程标准(实验稿)》(以下简称《数学课程标准》)进行的义务教育阶段数学学科的终结性考试。考试要有利于全面贯彻国家教育方针,推进素质教育;有利于体现九年义务教育的性质,全面提高教育质量;有利于数学课程改革,培养学生的创新精神和实践能力;有利于减轻学生过重的课业负担,促进学生生动、活泼、主动地学习。
数学学业考试命题应当根据学生的年龄特征、思维特点、数学背景和生活经验编制试题,面向全体学生,使具有不同认知特点、不同数学发展程度的学生都能正常表现自己的学习状况。学业考试要求公正、客观、全面、准确地评价学生通过初中教育阶段的数学学习所获得的发展状况。
数学学业考试要重视对学生学习数学“双基”的结果与过程的评价,重视对学生数学思考能力和解决问题能力的发展性评价,重视对学生数学认识水平的评价;学业考试试卷要有效发挥选择题、填空题、计算(求解)题、证明题、开放性问题、应用性问题、阅读分析题、探索性问题及其它各种题型的功能,试题设计必须与其评价的目标相一致,加强对学生思维水平与思维特征的考查,使试题的解答过程体现《数学课程标准》所倡导的数学活动方式,如观察、实验、猜测、验证、推理等等。
二、考试内容和要求
(一)考试内容
数学学业考试应以《数学课程标准》所规定的四大学习领域,即数与代数、空间与图形、统计与概率、实践与综合应用的内容为依据,主要考查基础知识、基本技能、基本体验和基本思想。
1.基础知识与基本技能
了解数的意义,理解数和代数运算的算理和算法,能够合理地进行基本运算与估算;能够在实际情境中有效地使用代数运算、代数模型及相关概念解决问题。
能够借助不同的方法探索几何对象的有关性质;能够使用不同的方式表达几何对象的大小、位置与特征;能够在头脑里构建几何对象,进行几何图形的分解与组合,能够对某些图形进行简单的变换;能够借助数学证明的方法确认数学命题的正确性。
正确理解数据的含义,能够结合实际需要有效地表达数据特征,会根据数据结果做合理的预测;了解概率的含义,能够借助概率模型或通过设计活动解释事件发生的概率。
使用计算器灵活地处理数值计算问题和从事有关探索规律的活动。
2. 数学活动过程
包括数学活动过程中所表现出来的思维方式、思维水平,对活动对象、相关知识与方法的理解深度;从事探究的意识、能力和信心等。也包括能否通过观察、实验、归纳、类比等活动获得数学猜想,并寻求证明猜想的合理性;能否使用恰当的语言有条理地表达数学的思考过程。
3.数学思考
学生在数感与符号感、空间观念、统计意识、推理能力、应用数学的意识等方面的发展情况,其内容主要包括:
能用数来表达和交流信息;能够使用符号表达数量关系,并借助符号转换获得对事物的理解;能够观察到现实生活中的基本几何现象;能够运用图形形象地表达问题、借助直观进行思考与推理;能意识到做一个合理的决策需要借助统计活动去收集信息;面对数据时能对它的来源、处理方法和由此而得到的推测性结论做合理的质疑;能正确地认识生活中的一些确定或不确定现象;能从事基本的观察、分析、实验、猜想和推理的活动,并能够有条理地、清晰地阐述自已的观点。
4.解决问题
能从数学角度提出问题、理解问题、并综合运用数学知识解决问题;具有一定的解决问题的基本策略;能合乎逻辑地与他人交流;具有初步的反思意识。
5.对数学的基本认识
形成对数学内容统一性的认识(不同数学知识之间的联系、不同数学方法之间的相似性等);深化对数学与现实或其他学科知识之间联系的认识等等。
(二)考试要求
1.《数学课程标准》规定了初中数学的教学要求
(1)使学生获得适用未来社会生活和进一步发展所必需的重要数学知识,以及基本的数学思想方法和必要的应用技能;
(2)初步学会运用数学的思维方式观察、分析现实社会,解决日常生活和其他学科学习中的问题,增强应用数学的意识;
(3)体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心;
(4)具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展。
2.《数学课程标准》阐述的教学要求具体分以下几个层次
知识技能要求:
(1)了解:能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出这一对象。
(2)理解:能描述对象特征和由来;能明确地阐述此对象与有关对象之间的区别和联系。
(3)掌握:能在理解的基础上,把对象运用到新的情境中去。
(4)运用:能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务。
过程性要求:
(5)经历(感受):在特定的数学活动中,获得一些初步的感受。
(6)体验(体会):参与特定的数学活动,在具体情境中认识对象的特征,获得一些经验。
(7)探索:主动参与特定的数学活动,通过观察、实验、推理等活动发现对象的某些特征或与其他对象的区别和联系。
这些要求从不同角度表明了数学学业考试要求的层次性。
(三)具体内容与考试要求细目列表
(表中“目标要求”栏中的序号和“(二)2.”中的规定一致)
具 体 内 容 知识技能要求 过程性要求
(1) (2) (3) (4) (5) (6) (7)
数 与 式 有理数的意义,用数轴上的点表示有理数 √
相反数、绝对值的意义 √
求相反数、绝对值,有理数的大小比较 √
乘方的意义 √
有理数加、减、乘、除、乘方及简单混合运算(三步为主),运用运算律进行简化运算 √
运用有理数的运算解决简单问题 √
对含有较大数字的信息作出合理解释 √
平方根、算术平方根、立方根的概念及其表示 √
用平方运算求某些非负数的平方根,用立方运算求某些数的立方根,用计算器求平方根与立方根 √
无理数与实数的概念,实数与数轴上的点的一一对应关系 √
用有理数估计一个无理数的大致范围 √
近似数与有效数字的概念 √
用计算器进行近似计算,并按问题的要求对结果取近似值 √
二次根式的概念及加、减、乘、除运算法则 √
实数的简单四则运算(不要求分母有理化) √
用字母表示数,列代数式表示简单问题的数量关系 √
代数式的实际意义与几何背景 √
求代数式的值 √
整数指数幂及其性质 √
用科学记数法表示数(含计算器) √
整式的概念(整式、单项式、多项式) √
整式的加、减、乘(其中的多项式相乘仅指一次式相乘)运算 √
乘法公式及计算 √
因式分解的概念 √
用提公因式法、公式法(直接用公式不超过2次)进行因式分解 √
分式的概念 √
约分、通分 √
简单分式的运算(加、减、乘、除) √
方程与不等式 方程(组)的解的检验 √
估计方程的解 √
一元一次方程及解法 √
二元一次方程组及解法 √
可化为一元一次方程的分式方程(方程中分式不超过2个)及解法 √
一元二次方程及其解法 √
根据具体问题中的数量关系列方程(组)并解决实际问题 √ √
根据具体问题中的数量关系列不等式(组)并解决简单实际问题 √
不等式的基本性质 √ √
解一元一次不等式(组) √
用数轴表示一元一次不等式(组)的解集 √



数 简单实际问题中的函数关系的分析 √
具体问题中的数量关系及变化规律 √
常量、变量的意义 √
函数的概念及三种表示法 √
简单函数及简单实际问题中的函数的自变量取值范围,函数值 √
使用适当的函数表示法,刻画实际问题中变量之间的关系 √
结合对函数关系的分析,预测变量的变化规律 √
一次函数及表达式 √ √
一次函数的图象及性质 √ √
正比例函数 √
用图象法求二元一次方程组的近似解 √
用一次函数解决实际问题 √
反比例函数及表达式 √ √
反比例函数的图象及性质 √ √
用反比例函数解决实际问题 √
二次函数及表达式 √ √
二次函数的图象及性质 √
确定二次函数图象的顶点、开口方向及其对称轴 √
用二次函数解决简单实际问题 √
用二次函数图象求一元二次方程的近似解 √
图形的认识 点、线、面 √
角的大小比较、估计,角的和与差的计算 √
角的单位换算 √
角平分线及其性质 √
补角、余角、对顶角 √
垂直、垂线段概念及性质,点到直线的距离 √ √
线段垂直平分线及性质 √
平行线的性质 √ √
平行线间的距离 √ √
画平行线 √
三角形的有关概念 √
画任意三角形的角平分线、中线、高 √
三角形的稳定性 √
三角形中位线的性质 √ √
全等三角形的概念 √
两个三角形全等的条件 √ √
等腰三角形的有关概念 √
等腰三角形的性质及判定 √ √
等边三角形的性质及判定 √
直角三角形的概念 √
直角三角形的性质及判定 √ √
勾股定理及其逆定理的运用 √ √
多边形的内角和与外角和公式 √ √
正多边形的概念 √
平行四边形、矩形、菱形、正方形、梯形的概念 √
平行四边形的性质及判定 √ √
矩形、菱形、正方形的性质及判定 √ √
等腰梯形的有关性质和判定 √ √
线段、矩形、平行四边形、三角形的重心及其物理意义 √ √
平面图形的镶嵌,镶嵌的简单设计 √ √
图形的认识 圆及其有关概念 √
弧、弦、圆心角的关系 √
点与圆、直线与圆、圆与圆的位置关系 √ √
圆的性质,圆周角与圆心角的关系、直径所对圆周角的特征 √ √
三角形的内心与外心 √
切线的概念 √
切线的性质与判定 √ √
弧长公式,扇形面积公式 √
圆锥的侧面积和全面积 √
基本作图 √
利用基本作图作三角形 √
过平面上的点作圆 √ √
尺规作图的步骤(已知、求作、作法) √
图形与变换 基本几何体的三视图 √
基本几何体与其三视图、展开图之间的关系 √
直棱柱、圆锥的侧面展开图 √
物体阴影的形成,根据光线的方向辨认实物的阴影 √
中心投影和平行投影 √
轴对称的基本性质 √ √
利用轴对称作图,简单图形间的轴对称关系 √ √
基本图形的轴对称性及其相关性质 √ √
轴对称图形的欣赏与设计 √
平移的概念,平移的基本性质 √ √
利用平移作图 √
旋转的概念,旋转的基本性质 √ √
平行四边形、圆的中心对称性 √
利用旋转作图 √
图形之间的变换关系(轴对称、平移与旋转) √
平移、旋转在现实生活中的应用 √ √
用轴对称、平移和旋转的组合进行图案设计 √
比例的基本性质,线段的比,成比例线段,黄金分割 √
图形的相似 √
相似图形的性质 √ √
两个三角形相似的性质及判定,直角三角形相似的判定 √ √
位似及应用 √
相似的应用 √
锐角三角函数(正弦、余弦、正切) √
特殊角(30、45、60)的三角函数值 √
使用计算器求已知锐角三角函数的值,由已知三角函数值求它对应的锐角 √
三角函数的简单应用 √
图形与坐标 平面直角坐标系;在给定的直角坐标系中,根据坐标描出点的位置、由点的位置写出它的坐标 √
建立适当的直角坐标系描述物体的位置 √
图形的变换与坐标的变化 √ √
用不同的方式确定物体的位置 √
图形与证明 证明的必要性 √
定义、命题、定理的含义,互逆命题的概念 √
反例的作用及反例的应用 √
反证法的含义 √
证明的格式及依据 √
全等三角形的性质定理和判定定理 √
平行线的性质定理和判定定理 √
三角形的内角和定理及推论 √
直角三角形全等的判定定理 √
角平分线性质定理及逆定理 √
垂直平分线性质定理及逆定理 √
三角形中位线定理 √
等腰三角形、等边三角形、直角三角形的性质和判定定理 √
平行四边形、矩形、菱形、正方形的性质和判定定理 √
等腰梯形的性质和判定定理 √
统 计 数据的收集、整理、描述和分析,用计算器处理较复杂的统计数据 √
总体、个体、样本的概念 √ √
扇形统计图 √
选择合适的统计量表示数据的集中程度 √
加权平均数 √
一组数据的离散程度的表示,极差和方差的计算 √ √
频数、频率的概念 √
列频数分布表,画频数分布直方图和频数折线图,并解决简单实际问题 √
频数分布的意义和作用 √
用样本估计总体的思想,用样本的平均数、方差估计总体的平均数和方差 √ √
根据统计结果作出合理的判断和预测,统计对决策的作用 √ √
应用统计知识与技能,解决简单的实际问题 √
概 率 概率的意义 √
用列举法求简单事件的概率 √
通过实验,获取事件发生的频率,大量重复实验时频率可作为事件发生概率的估计值 √
通过实验丰富对概率的认识,并解决一些实际问题 √
课题学习 “问题情境——建立模型——求解——解释与应用”的基本过程 √
数学知识之间的内在联系,对数学的整体认识 √
获得一些研究问题的方法和经验,数学知识在实际问题中的应用 √
通过获得成功的体验和克服困难的经历,增进应用数学的自信心 √

三、试卷结构和考试形式
(一)试卷结构
(1)填空题:8-10小题,占分比例约为20%;
(2)选择题:8-10小题,占分比例约为20%;
(3)解答题:8-10个小题,占分比例约为60%,解答题包括计算题、证明题、应用性问题、实践操作题、拓展探究题等不同形式。命题时应设计结合现实情境的开放性、探索性问题,杜绝人为编造的繁难计算题和证明题。

(二)试题难度
试卷整体难度控制在0.70-0.80之间,容易题约占70%,稍难题约占15%,较难题约占15%。
(三)试题比例
1. 各能力层级试题比例:了解约占10%,理解约占20%,掌握约占60%,灵活运用约占10%。
2. 各知识板块试题比例:数与代数约占50%,空间与图形约占35%,统计与概率约占15%,考试内容覆盖面要求达到《课程标准》规定内容的80%。
(四)考试形式
初中毕业数学学业考试采用闭卷笔试形式。各地应重视现代信息技术在数学考试形式改革中的作用,利用现代信息技术设计考试形式。

四、题型示例
(一)选择题
例1 现有3cm, 4cm, 7 cm, 9cm 长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是
A.1个 B.2个 C.3个 D.4个
【答案】B
例2 一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为

A.        B.

C.       D.

【答案】C
例3 为了比较甲乙两种水稻秧苗是否出苗整齐,每种秧苗各取10株分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙方差分别是3.9、15.8,则下列说法正确的是
A.甲秧苗出苗更整齐 B.乙秧苗出苗更整齐
C.甲、乙出苗一样整齐 D.无法确定
【答案】A
例4 若图4-1中的线段长为1,将此线段三等分,并以中间的一段为边作等边三角形,然后去掉这一段,得到图4-2,再将图4-2中的每一段作
类似变形,得到图4-3,按上述方法继续下去得到图
4-4,则图4-4中的折线的总长度为( )
A.2 B.
C. D.
【答案】D
(二)填空题
例5 如果点 在一次函数 的图像上,则 .(填“>”,“或“=”)
【答案】 >
例6 如图,有四张背面相同的纸牌A、B、C、D,其正面分别画有正三角形、圆、平行四边
形和正五边形.小明将这四张纸牌背面朝上洗匀后随机摸出一张,则摸出的图形是中心对称图形的概率是 .

A B C D
【答案】
例7 我们把按照一定顺序排列的一列数称为数列,如1,3,9,19,33,…就是一个数列,如果一个数列从第二个数起,每一个数与它前一个数的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做这个等差数列的公差.如2,4,6,8,10就是一个等差数列,它的公差为2.如果一个数列的后一个数与前一个数的差组成的新数列是等差数列,则称这个数列为二阶等差数列.例如数列1,3,9,19,33,…,它的后一个数与前一个数的差组成的新数列是2,6,10,14,…,这是一个公差为4的等差数列,所以,数列1,3,9,19,33,…是一个二阶等差数列.那么,请问二阶等差数列1,3,7,13,…的第五个数应是 .
【答案】21
(三)解答题
例8 计算: .
【答案】原式= .
例9 如图,小红同学用仪器测量一棵大树AB的高度,在C处测得∠ADG= ,在E处测
∠AFG= ,CE=8米,仪器高度CD=1.5米,求这棵树AB的高度(结果保留两位有效数字, 1.732).
【答案】如图所示,
因为∠DAF=∠AFG-∠ADF= =∠ADF,
所以AF=DF=8.
在Rt△AFG中,AG=AFsin = .
所以AB=AG+GB
= (米)
答:这棵树AB的高度约为8.4米.
例10 如图,在等腰梯形ABCD中,AD//BC,点E,F,G分别在边AB,BC,CD上,且
AE=GF=GC.求证:四边形AEFG为平行四边形.
【答案】因为四边形ABCD是等腰梯形,
所以∠B=∠C.
又GF=GC,∠GFC=∠C.
所以∠B=∠GFC,AB∥GF即AE∥GF.
又AE=GF,
所以四边形AEFG是平行四边形.
例11 学校为了调查学生对教学的满意程度,随机抽取了部分学生作问卷调查:用“A”表示“很满意”,“B”表示“满意”,“C”表示“比较满意”,“D”表示“不满意”,如图是工作人

员根据问卷调查统计资料绘制的两幅不完整统计图,请你根据统计图提供的信息解答以下问题:
(1)本次问卷调查,共调查了多少名学生?
(2)将图10甲中“B”部分的图形补充完整;
(3)如果该校有学生1000人,请你估计该校学生对教学感到“不满意”的约有多少人?
【答案】(1)200人;
(2)如下图所示;
(3)50人 .

例12 如图所示,已知二次函数 的图象过点A(2,0)和B(4,3), 为过点 且与 轴平行的直线,P(m,n)是该二次函数图象上的任意一点,过P作PH⊥l,H为垂足.
(1)求二次函数 的解析式;
(2)请直接写出使 的对应的x的取值范围;
(3)对于当 , 和 时,
分别计算|PO|2和|PH|2的值,由此观察其规律,并猜想一个结论.证明对于任意实数 ,此结论成立;
(4)试问是否存在实数 可使△POH为
正三角形,若存在,求出 的值;若不存在,请说明理由.

【答案】(1)∵抛物线 经过点 和



(2)当 时,
(3)当 时,

当 时, ,此时 , ;
当 时, ,此时 , .
猜想:不论m为何值,均有 .
证明:∵P(m,n)在 的图象上




(4)存在.
理由:因为由(3)可知不论m为何值,均有 ,即 ,
故要使△POH为正三角形,只需 ,即x轴平分PH即可,11
故 ,即 ,解得 .

热心网友 时间:2023-10-31 12:43

没= =.....

热心网友 时间:2023-10-31 12:44

七年级语文应该很好写啊
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
全方位揭秘!大数据从0到1的完美落地之Linux磁盘、压缩解压命令_百度... 长期喝红茶可以减肥吗 长期喝红茶能不能减肥呢 经常喝红茶会不会长胖啊 ...都行最好是写完的或者更新很多很多了主要是玄幻悬疑类的 ...身上后变强的女强文,最好是有女扮男装的,像《傲风》这一类型完结的... 民法典中商标使用在先是否侵权 武汉市著名商标认定和保护办法第二十条 侵犯行为包括哪种形式 擅自买卖商标标识会被认为滥用商标吗 道家有哪些人物 我做三斤糯米放多少水 “奔驰定理”的由来是什么? 三角形重心定理的定理由来 我在淘宝开了个网店卖油画,怎没宣传啊? 我有一幅画想卖(油画),在网上怎么卖,请大家出出主意,网上有没有寄卖的地方 我是一个在淘宝卖油画的,现在生意越来越差,我应该怎么做?有高人指点么? 淘宝店铺新开店铺怎么增加人流量,卖画好卖吗? 那位朋友在淘宝上买过油画,给我介绍个比较好的卖家,我想买几幅油画挂在家里。谢谢了! 淘宝上怎样发布油画,类目搜索什么? 我是在淘宝卖油画的应该怎么宣传推广? 我是淘宝卖油画的,可以帮我介绍介绍我店铺吗? 平面直角坐标系的由来 小石潭的水有什么特点? 支付宝扫不出来福卡是怎么回事 小学平移法物体向上平移五个格怎么表示 把一个图形先向左平移6格,再向上平移六格应画几个图形? 将火箭图先向左平移4格,再向上平移3格,画出平移后的图形. 画出三角形称向右平移10格,再向上平移两格的图形 问一下在做画图题的时候,比如说先向右平移2个格再向上平移四个格,用不用把先向右平移2个格的图形画出来 遗传色斑怎么办 销售需要具备哪些能力 《断·桥》中马思纯入戏太深哭掉隐形眼镜,如何评价她的演技? 方励晒《断桥》杀青照,如何评价主演马思纯的演技? 知道不知道密码怎么办? 如何评价马思纯在《江照黎明》中的表现? 马思纯亮相电影《断·桥》见面会,她在影片中的形象是怎样的? 越南摇滚烤排骨的做法 越南糯米排骨 越南糯米排骨的传统做法 越南糯米排骨的做法 马思纯在《江照黎明》中增肥出演李晓楠一角,你如何评价这样的形象? 梦见朋范法要进牢房了要我帮他 秋葵蛋卷的做法,秋葵蛋卷怎么做好吃,秋葵蛋卷的家常 怎么做好吃,秋葵蛋卷的家常做法 金鱼是我们国家的特有的一种观赏鱼,小金鱼怎么养? 为什么很多玄幻小说里的主角都是逆天而行 有那些好看的玄幻小说,主角要是那种天赋逆天的少年 主角带着逆天功法的玄幻小说 谐音法巧记日语50音图发音 关于颜色的英语谚语十句~!!不要词组~~!!