发布网友 发布时间:2022-04-22 09:25
共5个回答
热心网友 时间:2022-07-13 01:47
1、质数是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。质数p的约数只有两个:1和p。初等数学基本定理:任一大于1的自然数,要么本身是质数,要么可以分解为几个质数之积,且这种分解是唯一的。
例如:1、3、7、9。
2、合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。所有大于2的偶数都是合数。所有大于5的奇数中,个位为5的都是合数。除0以外,所有个位为0的自然数都是合数。
例如:4、6、8、10。
3、素数即质数
4、根据对等这种关系对集合进行分类,凡是互相对等的集合就划入同一类。这样,每一个集合都被划入了某一类。任意一个集合A所属的类就称为集合A的基数,记作|A|。
例如:假设A,B的基数分别是a,β,即|A|=a,|B|=β,如果A与B的某个子集对等,就称 A 的基数不大于B的基数,记作a≤β,或β≥a。
5、序数概念是建立在良序集概念之上的,而良序集又是偏序集、全序集的特殊情形。
序数原来被定义为良序集的序型,而良序集A的序型,作为从A的元素的属性中抽象出来的结果,是所有与A序同构的一切良序集的共同特征,即定义为{B|BA}。
例如:第一、第二、第三、第四、第五、第六、第七、第八、第九、第十。
热心网友 时间:2022-07-13 01:47
1.质数: 一个数,如果只有1和它本身两个因数,这样的数叫做质数,又称素数。例如(10以内) 2,3,5,7 是质数,而 4,6,8,9 则不是,后者称为合成数或合数。特别声明一点,1既不是质数也不是合数。热心网友 时间:2022-07-13 01:48
质数(prime number)又称素数,有无限个。一个大于1的自然数,除了1和它本身外,不能被整除以其他自然数(质数),换句话说就是该数除了1和它本身以外不再有其他的因数;否则称为合数。
合数,(Composite number),指自然数中除了能被1和本身整除外,还能被其他的数整除(不包括0)的数。与之相对的是质数(因数只有1和它本身,如2,3,5,7,11,13等等,也称素数),而1既不属于质数也不属于合数。最小的合数是4。
素数,同质数。
基数(cardinal number)是集合论中刻画任意集合大小的一个概念。两个能够建立元素间一一对应的集合称为互相对等集合。例如3个人的集合和3匹马的集合可以建立一一对应,是两个对等的集合。
序数是自然数的一种扩展,跟整数与基数不同,着重的是次序的性质。大于有限数的序数也称作超限序数。
热心网友 时间:2022-07-13 01:49
质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。例;17,19,3,5,7比1大但不是素数的数称为合数。基数表示数的总数,序数是用自然数表示事物排列的次序基数(“有几个”。是问东西一共有多少)序数( “第几个”。是问东西排在第几位)热心网友 时间:2022-07-13 01:49
,除了1和它本身以外不再有其他因数的自然数。质数p的约数只有两个:1和p。初等数学基本定理:任一大于1的自然数,要么本身是质数,要么可以分解为几个质数之积,且这种分解是唯一的。例如:1、3、7、9。2、合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。所有大于2的偶数都是合数。所有大于5的奇数中,个位为5的都是合数。除0以外,所有个位为0的自然数都是合数。例如:4、6、8、10。3、素数即质数4、根据对等这种关系对集合进行分类,凡是互相对等的集合就划入同一类。这样,每一个集合都被划入了某一类。任意一个集合A所属的类就称为集合A的基数,记作|A|。例如:假设A,B的基数分别是a,β,即|A|=a,|B|=β,如果A与B的某个子集对等,就称 A 的基数不大于B的基数,记作a≤β,或β≥a。5、序数概念是建立在良序集概念之上的,而良序集又是偏序集、全序集的特殊情形。序数原来被定义为良序集的序型,而良序集A的序型,作为从A的元素的属性中抽象出来的结果,是所有与A序同构的一切良序集的共同特征,即定义为{B|BA}。例如:第一、第二、第三、第四、第五、第六、第七、第八、第九、第十。全文