发布网友 发布时间:2022-04-22 11:17
共1个回答
热心网友 时间:2023-05-18 06:57
风筝型数学模型公式S1×S4=S2×S3;蝴蝶模型基本公式:AD:BC=OA:OC。
蝴蝶定理是古代欧氏平面几何中最精彩的结果之一。这个命题最早出现在1815年,由W·G·霍纳提出证明。
风筝模型分析:
风筝模型定理公式需要在一个任意四边形中被两条对角线分成四个三角形。根据相等比例的内项乘积等于外项乘积得,S1×S4=S2×S3。
因为△ABC与△ACD的底相等,所以面积比等于高的长度比,先找“风筝的骨架”,然后把骨架连起来,即先找叉叉,再包叉叉。考试中最喜欢考的是标红的面积比,因为这种大块的面积比较隐蔽,适合考察同学们在图形中的观察能力。
风筝的相关定理:
A、C是线段BD的垂直平分线上面的两点,AC与BD相交于O,过O点做任意两条直线交四边形ABCD于P、F、Q、E,PF交BD于M,EQ交BD于N,则MO=NO。
风筝模型面积公式为对角线a×对角线b÷2,风筝形是指对角线互相垂直的四边形,面积等于对角线乘积的一半。风筝模型公式有个通用公式为0点215r^2。