发布网友 发布时间:2022-06-12 13:45
共2个回答
热心网友 时间:2023-10-09 10:53
相似和合同从定义出发的话,没有任何关系,只是定义看起来比较相似而已,一个-1一个T。
但是实对称阵在等价对角阵的变换过程中用到的那个变换矩阵P可以是一个正交矩阵,也就是逆矩阵和置换矩阵合并了,因此实对称阵与对角阵的相似与合同才有关系。
相关如下:
两个对称矩阵的积是对称矩阵,当且仅当两者的乘法可交换。两个实对称矩阵乘法可交换当且仅当两者的特征空间相同。
若矩阵A满足条件A=A',则称A为对称矩阵。由定义知对称矩阵一定是方阵,而且位于主对角线对称位置上的元素必对应相等,即aij=aji对任意i,j都成立。
对称矩阵中的元素关于主对角线对称,故只要存储矩阵中上三角或下三角中的元素,让每两个对称的元素共享一个存储空间。这样,能节约近一半的存储空间。
热心网友 时间:2023-10-09 10:53
简单分析一下,详情如图所示