数据挖掘的数据分析方法有哪些
发布网友
发布时间:2022-03-31 12:23
我来回答
共2个回答
热心网友
时间:2022-03-31 13:53
回答第一,对比分析,简单来说就是通过不同数据的标准比对更直观反映数量的变化关系,它属于常见的一种方法,具体可分为横向和纵向两种,前者是固定时间对比数据,如在固定时间内比对不同等级用户的购买商品金额、不同商品的销售业绩、利润率高低等等。后者指的是就同一事物比对时间纬度上的变化,如环保、同比等等,不管是哪种分析方法根本目的就是利用分析得到可视化的、明了结论。
第二,分组分析法,指的是根据数据做特征分析,将总的数据分成不同模块,就规模大小、速度、水平等做综合有效判断。举个例子,如人们无法利用后台注册用户的名字、性别、受教育程度做具体的分析,但是这些参数所对应的数据则有分析的基础和可能,分析完就能得到清晰的用户画像。
第三,预测分析法,数据分析的本质目的就是结合过去、当下已有的数据做分析,以参数之间的关系更好预估未来的发展可能、可能遇到的麻烦和问题,提前做好预案准备、降低风险出现的概率和可能性。
希望我的回答可以帮到您[比心]
提问区块链不能解决企业的问题包括以下哪些?
1治理难。2产品服务质量差3卖货难4融资难。
回答可以滴
可以滴
提问都可以吗
回答对的哈
热心网友
时间:2022-03-31 15:11
数据挖掘的常见分析方法
1.神经网络方法
神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。
2.遗传算法
遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,是一种仿生全局优化方法。遗传算法具有的隐含并行性、易于和其它模型结合等性质使得它在数据挖掘中被加以应用。
3.决策树方法
决策树是一种常用于预测模型的算法,它通过将大量数据有目的分类,从中找到一些有价值的,潜在的信息。它的主要优点是描述简单,分类速度快,特别适合大规模的数据处理。
4.粗集方法
粗集理论是一种研究不精确、不确定知识的数学工具。粗集方法有几个优点:不需要给出额外信息;简化输入信息的表达空间;算法简单,易于操作。粗集处理的对象是类似二维关系表的信息表。
5.覆盖正例排斥反例方法
它是利用覆盖所有正例、排斥所有反例的思想来寻找规则。首先在正例集合中任选一个种子,到反例集合中逐个比较。与字段取值构成的选择子相容则舍去,相反则保留。按此思想循环所有正例种子,将得到正例的规则(选择子的合取式)。
6.统计分析方法
在数据库字段项之间存在两种关系:函数关系和相关关系,对它们的分析可采用统计学方法,即利用统计学原理对数据库中的信息进行分析。可进行常用统计、回归分析、相关分析、差异分析等。
7.模糊集方法
即利用模糊集合理论对实际问题进行模糊评判、模糊决策、模糊模式识别和模糊聚类分析。系统的复杂性越高,模糊性越强,一般模糊集合理论是用隶属度来刻画模糊事物的亦此亦彼性的。