问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

有机发光二极管(OLED)

发布网友 发布时间:2022-04-23 07:51

我来回答

8个回答

热心网友 时间:2022-04-08 05:22

有机发光二极管又称为有机电激光显示(Organic Light-Emitting Diode,OLED),由美籍华裔教授邓青云在实验室中发现,由此展开了对OLED的研究。OLED显示技术具有自发光的特性,采用非常薄的有机材料涂层和玻璃基板,当有电流通过时,这些有机材料就会发光,而且OLED显示屏幕可视角度大,并且能够节省电能。
OLED显示技术具有自发光的特性,采用非常薄的有机材料涂层和玻璃基板,当有电流通过时,这些有机材料就会发光,而且OLED显示屏幕可视角度大,并且能够节省电能,从2003年开始这种显示设备在MP3播放器上得到了应用。
以OLED使用的有机发光材料来看,一是以染料及颜料为材料的小分子器件系统,另一则以共轭性高分子为材料的高分子器件系统。同时由于有机电致发光器件具有发光二极管整流与发光的特性,因此小分子有机电致发光器件亦被称为OLED(Organic Light Emitting Diode),高分子有机电致发光器件则被称为PLED (Polymer Light-emitting Diode)。小分子及高分子OLED在材料特性上可说是各有千秋,但以现有技术发展来看,如作为监视器的信赖性上,及电气特性、生产安定性上来看,小分子OLED处于领先地位,当前投入量产的OLED组件,全是使用小分子有机发光材料。

结构
OLED的基本结构是由一薄而透明具半导体特性之铟锡氧化物(ITO),与电力之正极相连,再加上另一个金属阴极,包成如三明治的结构。整个结构层中包括了:空穴传输层(HTL)、发光层(EL)与电子传输层(ETL)。当电力供应至适当电压时,正极空穴与阴极电荷就会在发光层中结合,产生光亮,依其配方不同产生红、绿和蓝RGB三原色,构成基本色彩。OLED的特性是自己发光,不像TFT LCD需要背光,因此可视度和亮度均高,其次是电压需求低且省电效率高,加上反应快、重量轻、厚度薄,构造简单,成本低等,被视为 21世纪最具前途的产品之一。
有机发光二极体的发光原理和无机发光二极体相似。当元件受到直流电(Direct Current;DC)所衍生的顺向偏压时,外加之电压能量将驱动电子(Electron)与空穴(Hole)分别由阴极与阳极注入元件,当两者在传导中相遇、结合,即形成所谓的电子-空穴复合(Electron-Hole Capture)。而当化学分子受到外来能量激发後,若电子自旋(Electron Spin)和基态电子成对,则为单重态(Singlet),其所释放的光为所谓的荧光(Fluorescence);反之,若激发态电子和基态电子自旋不成对且平行,则称为三重态(Triplet),其所释放的光为所谓的磷光(Phosphorescence)。
当电子的状态位置由激态高能阶回到稳态低能阶时,其能量将分别以光子(Light Emission)或热能(Heat Dissipation)的方式放出,其中光子的部分可被利用当做显示功能;然有机荧光材料在室温下并无法观测到三重态的磷光,故PM-OLED元件发光效率之理论极限值仅25%。
PM-OLED发光原理是利用材料能阶差,将释放出来的能量转换成光子,所以我们可以选择适当的材料当做发光层或是在发光层中掺杂染料以得到我们所需要的发光颜色。此外,一般电子与电洞的结合反应均在数十纳秒(ns)内,故PM-OLED的应答速度非常快。

S.:PM-OLED的典型结构。典型的PM-OLED由玻璃基板、ITO(indium tin oxide;铟锡氧化物)阳极(Anode)、有机发光层(Emitting Material Layer)与阴极(Cathode)等所组成,其中,薄而透明的ITO阳极与金属阴极如同三明治般地将有机发光层包夹其中,当电压注入阳极的空穴(Hole)与阴极来的电子(Electron)在有机发光层结合时,激发有机材料而发光。
而发光效率较佳、普遍被使用的多层PM-OLED结构,除玻璃基板、阴阳电极与有机发光层外,尚需制作空穴注入层(Hole Inject Layer;HIL)、空穴传输层(Hole Transport Layer;HTL)、电子传输层(Electron Transport Layer;ETL)与电子注入层(Electron Inject Layer;EIL)等结构,且各传输层与电极之间需设置绝缘层,因此热蒸镀(Evaporate)加工难度相对提高,制作过程亦变得复杂。
由于有机材料及金属对氧气及水气相当敏感,制作完成後,需经过封装保护处理。PM-OLED虽需由数层有机薄膜组成,然有机薄膜层厚度约仅1,000~1,500A°(0.10~0.15 um),整个显示板(Panel)在封装加干燥剂(Desiccant)後总厚度不及200um(0.2mm),具轻薄之优势。

材料
有机材料的特性深深地影响元件之光电特性表现。在阳极材料的选择上,材料本身必需是具高功函数(High work function)与可透光性,所以具有4.5eV-5.3eV的高功函数、性质稳定且透光的ITO透明导电膜,便被广泛应用于阳极。在阴极部分,为了增加元件的发光效率,电子与电洞的注入通常需要低功函数(Low work function)的Ag、Al、Ca、In、Li与Mg等金属,或低功函数的复合金属来制作阴极(例如:Mg-Ag镁银)。
适合传递电子的有机材料不一定适合传递空穴,所以有机发光二极体的电子传输层和空穴传输层必须选用不同的有机材料。目前最常被用来制作电子传输层的材料必须制膜安定性高、热稳定且电子传输性佳,一般通常采用萤光染料化合物。如Alq、Znq、Gaq、Bebq、Balq、DPVBi、ZnSPB、PBD、OXD、BBOT等。而空穴传输层的材料属于一种芳香胺萤光化合物,如TPD、TDATA等有机材料。
有机发光层的材料须具备固态下有较强萤光、载子传输性能好、热稳定性和化学稳定性佳、量子效率高且能够真空蒸镀的特性,一般有机发光层的材料使用通常与电子传输层或电洞传输层所采用的材料相同,例如Alq被广泛用于绿光,Balq和DPVBi则被广泛应用于蓝光。
一般而言,OLED可按发光材料分为两种:小分子OLED和高分子OLED(也可称为PLED)。小分子OLED和高分子OLED的差异主要表现在器件的制备工艺不同:小分子器件主要采用真空热蒸发工艺,高分子器件则采用旋转涂覆或喷涂印刷工艺。小分子材料厂商主要有:Eastman、Kodak、出光兴产、东洋INK制造、三菱化学等;高分子材料厂商主要有:CDT、Covin、Dow Chemical、住友化学等。国际上与OLED有关的专利已经超过1400份,其中最基本的专利有三项。小分子OLED的基本专利由美国Kodak公司拥有,高分子OLED的专利由英国的CDT(Cambridge DisPlay Technology)和美国的Uniax公司拥有。

工艺

氧化铟锡(ITO)基板前处理

(1) ITO表面平整度:ITO已广泛应用在商业化的显示器面板制造,其具有高透射率、低电阻率及高功函数等优点。一般而言,利用射频溅镀法(RF sputtering)所制造的ITO,易受工艺控制因素不良而导致表面不平整,进而产生表面的尖端物质或突起物。另外高温锻烧及再结晶的过程亦会产生表面约10 ~ 30nm的突起层。这些不平整层的细粒之间所形成的路径会提供空穴直接射向阴极的机会,而这些错综复杂的路径会使漏电流增加。一般有三个方法可以解决这表面层的影响?U一是增加空穴注入层及空穴传输层的厚度以降低漏电流,此方法多用于PLED及空穴层较厚的OLED(~200nm)。二是将ITO玻璃再处理,使表面光滑。三是使用其它镀膜方法使表面平整度更好。

(2) ITO功函数的增加:当空穴由ITO注入HIL时,过大的位能差会产生萧基能障,使得空穴不易注入,因此如何降低ITO / HIL接口的位能差则成为ITO前处理的重点。一般我们使用O2-Plasma方式增加ITO中氧原子的饱和度,以达到增加功函数之目的。ITO经O2-Plasma处理后功函数可由原先之4.8eV提升至5.2eV,与HIL的功函数已非常接近。
加入辅助电极,由于OLED为电流驱动组件,当外部线路过长或过细时,于外部电路将会造成严重之电压梯度,使真正落于OLED组件之电压下降,导致面板发光强度减少。由于ITO电阻过大(10 ohm / square),易造成不必要之外部功率消耗,增加一辅助电极以降低电压梯度成了增加发光效率、减少驱动电压的快捷方式。铬(Cr:Chromium)金属是最常被用作辅助电极的材料,它具有对环境因子稳定性佳及对蚀刻液有较大的选择性等优点。然而它的电阻值在膜层为100nm时为2 ohm / square,在某些应用时仍属过大,因此在相同厚度时拥有较低电阻值的铝(Al:Aluminum)金属(0.2 ohm / square)则成为辅助电极另一较佳选择。但是,铝金属的高活性也使其有信赖性方面之问题因此,多叠层之辅助金属则被提出,如:Cr / Al / Cr或Mo / Al / Mo,然而此类工艺增加复杂度及成本,故辅助电极材料的选择成为OLED工艺中的重点之一。

阴极工艺
在高解析的OLED面板中,将细微的阴极与阴极之间隔离,一般所用的方法为蘑菇构型法(Mushroom structure approach),此工艺类似印刷技术的负光阻显影技术。在负光阻显影过程中,许多工艺上的变异因子会影响阴极的品质及良率。例如,体电阻、介电常数、高分辨率、高Tg、低临界维度(CD)的损失以及与ITO或其它有机层适当的黏着接口等。

封装
⑴ 吸水材料:一般OLED的生命周期易受周围水气与氧气所影响而降低。水气来源主要分为两种:一是经由外在环境渗透进入组件内,另一种是在OLED工艺中被每一层物质所吸收的水气。为了减少水气进入组件或排除由工艺中所吸附的水气,一般最常使用的物质为吸水材(Desiccant)。Desiccant可以利用化学吸附或物理吸附的方式捕捉自由移动的水分子,以达到去除组件内水气的目的。
⑵ 工艺及设备开发:封装工艺之流程,为了将Desiccant置于盖板及顺利将盖板与基板黏合,需在真空环境或将腔体充入不活泼气体下进行,例如氮气。值得注意的是,如何让盖板与基板这两部分工艺衔接更有效率、减少封装工艺成本以及减少封装时间以达最佳量产速率,已俨然成为封装工艺及设备技术发展的3大主要目标。

彩色化技术
显示器全彩色是检验显示器是否在市场上具有竞争力的重要标志,因此许多全彩色化技术也应用到了OLED显示器上,按面板的类型通常有下面三种:RGB像素独立发光,光色转换(Color Conversion)和彩色滤光膜(Color Filter)。

RGB象素独立发光
利用发光材料独立发光是目前采用最多的彩色模式。它是利用精密的金属荫罩与CCD象素对位技术,首先制备红、绿、蓝三基色发光中心,然后调节三种颜色组合的混色比,产生真彩色,使三色OLED元件独立发光构成一个像素。该项技术的关键在于提高发光材料的色纯度和发光效率,同时金属荫罩刻蚀技术也至关重要。
有机小分子发光材料AlQ3是很好的绿光发光小分子材料,它的绿光色纯度,发光效率和稳定性都很好。但OLED最好的红光发光小分子材料的发光效率只有31mW,寿命1万小时,蓝色发光小分子材料的发展也是很慢和很困难的。有机小分子发光材料面临的最大瓶颈在于红色和蓝色材料的纯度、效率与寿命。但人们通过给主体发光材料掺杂,已得到了色纯度、发光效率和稳定性都比较好的蓝光和红光。
高分子发光材料的优点是可以通过化学修饰调节其发光波长,现已得到了从蓝到绿到红的覆盖整个可见光范围的各种颜色,但其寿命只有小分子发光材料的十分之一,所以对高分子聚合物,发光材料的发光效率和寿命都有待提高。不断地开发出性能优良的发光材料应该是材料开发工作者的一项艰巨而长期的课题。
随着OLED显示器的彩色化、高分辨率和大面积化,金属荫罩刻蚀技术直接影响着显示板画面的质量,所以对金属荫罩图形尺寸精度及定位精度提出了更加苛刻的要求。

光色转换 光色转换是以蓝光OLED结合光色转换
膜阵列,首先制备发蓝光OLED的器件,然后利用其蓝光激发光色转换材料得到红光和绿光,从而获得全彩色。该项技术的关键在于提高光色转换材料的色纯度及效率。这种技术不需要金属荫罩对位技术,只需蒸镀蓝光OLED元件,是未来大尺寸全彩色OLED显示器极具潜力的全彩色化技术之一。但它的缺点是光色转换材料容易吸收环境中的蓝光,造成图像对比度下降,同时光导也会造成画面质量降低的问题。掌握此技术的日本出光兴产公司已生产出10英寸的OLED显示器。

彩色滤光膜
此种技术是利用白光OLED结合彩色滤光膜,首先制备发白光OLED的器件,然后通过彩色滤光膜得到三基色,再组合三基色实现彩色显示。该项技术的关键在于获得高效率和高纯度的白光。它的制作过程不需要金属荫罩对位技术,可采用成熟的液晶显示器LCD的彩色滤光膜制作技术。所以是未来大尺寸全彩色OLED显示器具有潜力的全彩色化技术之一,但采用此技术使透过彩色滤光膜所造成光损失高达三分之二。日本TDK公司和美国Kodak公司采用这种方法制作OLED显示器。
RGB像素独立发光,光色转换和彩色滤光膜三种制造OLED显示器全彩色化技术,各有优缺点。可根据工艺结构及有机材料决定。

驱动方式
OLED的驱动方式分为主动式驱动(有源驱动)和被动式驱动(无源驱动)。

无源驱动(PM OLED)
其分为静态驱动电路和动态驱动电路。
⑴ 静态驱动方式:在静态驱动的有机发光显示器件上,一般各有机电致发光像素的阴极是连在一起引出的,各像素的阳极是分立引出的,这就是共阴的连接方式。若要一个像素发光只要让恒流源的电压与阴极的电压之差大于像素发光值的前提下,像素将在恒流源的驱动下发光,若要一个像素不发光就将它的阳极接在一个负电压上,就可将它反向截止。但是在图像变化比较多时可能出现交叉效应,为了避免我们必须采用交流的形式。静态驱动电路一般用于段式显示屏的驱动上。
⑵ 动态驱动方式:在动态驱动的有机发光显示器件上人们把像素的两个电极做成了矩阵型结构,即水平一组显示像素的同一性质的电极是共用的,纵向一组显示像素的相同性质的另一电极是共用的。如果像素可分为N行和M列,就可有N个行电极和M个列电极。行和列分别对应发光像素的两个电极。即阴极和阳极。在实际电路驱动的过程中,要逐行点亮或者要逐列点亮像素,通常采用逐行扫描的方式,行扫描,列电极为数据电极。实现方式是:循环地给每行电极施加脉冲,同时所有列电极给出该行像素的驱动电流脉冲,从而实现一行所有像素的显示。该行不再同一行或同一列的像素就加上反向电压使其不显示,以避免“交叉效应”,这种扫描是逐行顺序进行的,扫描所有行所需时间叫做帧周期。
在一帧中每一行的选择时间是均等的。假设一帧的扫描行数为N,扫描一帧的时间为1,那么一行所占有的选择时间为一帧时间的1/N该值被称为占空比系数。在同等电流下,扫描行数增多将使占空比下降,从而引起有机电致发光像素上的电流注入在一帧中的有效下降,降低了显示质量。因此随着显示像素的增多,为了保证显示质量,就需要适度地提高驱动电流或采用双屏电极机构以提高占空比系数。
除了由于电极的公用形成交叉效应外,有机电致发光显示屏中正负电荷载流子复合形成发光的机理使任何两个发光像素,只要组成它们结构的任何一种功能膜是直接连接在一起的,那两个发光像素之间就可能有相互串扰的现象,即一个像素发光,另一个像素也可能发出微弱的光。这种现象主要是因为有机功能薄膜厚度均匀性差,薄膜的横向绝缘性差造成的。从驱动的角度,为了减缓这种不利的串扰,采取反向截至法也是一行之有效的方法。
带灰度控制的显示:显示器的灰度等级是指黑白图像由黑色到白色之间的亮度层次。灰度等级越多,图像从黑到白的层次就越丰富,细节也就越清晰。灰度对于图像显示和彩色化都是一个非常重要的指标。一般用于有灰度显示的屏多为点阵显示屏,其驱动也多为动态驱动,实现灰度控制的几种方法有:控制法、空间灰度调制、时间灰度调制。
二、有源驱动(AM OLED)
有源驱动的每个像素配备具有开关功能的低温多晶硅薄膜晶体管(LowTemperature Poly-Si Thin Film Transistor, LTP-Si TFT),而且每个像素配备一个电荷存储电容,外围驱动电路和显示阵列整个系统集成在同一玻璃基板上。与LCD相同的TFT结构,无法用于OLED。这是因为LCD采用电压驱动,而OLED却依赖电流驱动,其亮度与电流量成正比,因此除了进行ON/OFF切换动作的选址TFT之外,还需要能让足够电流通过的导通阻抗较低的小型驱动TFT。
有源驱动属于静态驱动方式,具有存储效应,可进行100%负载驱动,这种驱动不受扫描电极数的*,可以对各像素独立进行选择性调节。
有源驱动无占空比问题,驱动不受扫描电极数的*,易于实现高亮度和高分辨率。
有源驱动由于可以对亮度的红色和蓝色像素独立进行灰度调节驱动,这更有利于OLED彩色化实现。
有源矩阵的驱动电路藏于显示屏内,更易于实现集成度和小型化。另外由于解决了外围驱动电路与屏的连接问题,这在一定程度上提高了成品率和可靠性。
三、两者比较
被动式 主动式
瞬间高高密度发光(动态驱动/有选择性) 连续发光(稳态驱动)
面板外附加IC芯片 TFT驱动电路设计/内藏薄膜型驱动IC
线逐步式扫描 线逐步式抹写数据
阶*制容易 在TFT基板上形成有机EL画像素
低成本/高电压驱动 低电压驱动/低耗电能/高成本
设计变更容易、交货期短(制造简单) 发光组件寿命长(制程复杂)
简单式矩阵驱动+OLED LTPS TFT+OLED

热心网友 时间:2022-04-08 06:40

我知道“物理电子学”有这个方向
清华大学,浙江大学,吉林大学,上海大学,大连理工,西安交大,东南大学,中南大学,中科院长春激发态物理研究所.....很多大学都有,现在LED/OLED都挺火的。

热心网友 时间:2022-04-08 08:14

清华大学,特种显示技术,该专业的导师是中国自主产权OLED公司维信诺的老总。

热心网友 时间:2022-04-08 10:06

有机发光二极管(OLED)显示屏是使用有机材料的电流注入型固态、自发光器件。因其所用器件比LED更功耗低、响应更快、更薄、且能弯曲,而可用来实现软屏显示。 有机发光二极管(OLED)是一种薄膜多层器件,由碳分子或聚合物组成。

它们的构成是:金属箔、薄膜或平板(刚性或弹性)平台;电极层;活性物质层;反电极层;保护层。至少一个电极必须是透明的。 有机发光二极管(OLED)器件有宽泛的发射光谱,这给OLED带来一个强于LED的优点,能通过细微改变器件的化学组成来调谐OLED的发光波长峰值。因此在OLED中能够轻易得到高质量的白光,预计未来白光质量将进一步改善。

有机发光二极管(OLED)技术是一种新生的照明技术,目前处于关键的发展阶段。虽然只有OLED显示实现了商业化,行业专家认为,假如没有大量资本注入,2015年之前这种照明技术是无法实现商业化的。

热心网友 时间:2022-04-08 12:14

清华大学.邱勇教授是国内第一条自主生产线的公司维信诺的老大。

热心网友 时间:2022-04-08 14:55

南京航空航天大学材料系

热心网友 时间:2022-04-08 17:53

华南理工 天津理工 南开 清华 浙大

热心网友 时间:2022-04-08 21:08

半导体专业应该有研究发光二极管
有机发光二极管(OLED)

1. 有机发光二极管(OLED)是由美籍华裔教授邓青云在实验室中发现,并由此展开了对OLED的研究。OLED显示技术具有自发光特性,采用非常薄的有机材料涂层和玻璃基板。当电流通过时,这些有机材料会发光,且OLED显示屏幕具有大的可视角度和节能的特性。自2003年以来,这种显示设备已在MP3播放器上得到应用。2....

什么是有机发光二极管( OLED)器件的效率?

深入解析有机发光世界的两大效率指标:外量子效率(EQE)与内量子效率(IQE),它们是衡量有机发光器件性能优劣的关键参数。在电流驱动的有机发光世界中,量子效率如同性能的度量标尺,它由两个核心部分组成:内量子效率(IQE)和外量子效率(EQE)。 IQE,如同材料的心脏,它衡量的是激子复合产生的光子数...

有机发光二极管(OLED)是什么?

有机发光二极管(OLED)显示屏是使用有机材料的电流注入型固态、自发光器件。因其所用器件比LED更功耗低、响应更快、更薄、且能弯曲,而可用来实现软屏显示。 有机发光二极管(OLED)是一种薄膜多层器件,由碳分子或聚合物组成。它们的构成是:金属箔、薄膜或平板(刚性或弹性)平台;电极层;活性物质...

什么是“OLED”?

OLED, 简称“有机发光二极管”,是一个英文缩写,其全称为Organic Light-Emitting Diode。这个术语在科技领域中广泛使用,特别是在物理学的学术研究中,其流行度达到了4959。OLED代表了一种特殊类型的二极管,其特点是利用有机化合物来产生光,具有高效、低电压驱动和优良的稳定性,被三星等公司广泛应用在...

micro oled与micro led区别

Micro OLED是一种有机发光二极管(OLED)技术,通过在有机材料中施加电压来激发发光;而Micro LED是一种LED技术,通过在半导体材料中施加电压来激发发光。材料不同 Micro OLED主要使用有机材料作为发光材料,这些有机材料可以通过化学反应来发光。而Micro LED使用的是无机材料。制造工艺不同 Micro OLED的...

oled什么材料做

OLED,即有机发光二极管,其核心构造在于其特殊的发光层。这个发光层主要由有机材料构成,这些有机材料能够发光并产生电能。常见的OLED材料主要包括以下几类:二、有机小分子材料 这些小分子主要包括芳香族二胺和三芳基胺衍生物等。它们在OLED器件的制作过程中扮演重要角色,通常作为发光的主体或客体使用。

OLED屏幕和IPS屏幕有啥区别?

一、OLED屏幕OLED屏幕是有机发光二极管屏幕的简称,它是一种新型的显示技术,具有自发光、高对比度、高亮度、快速响应、低功耗等优点。OLED屏幕的每个像素点都是由红、绿、蓝三种有机材料组成的,可以实现真正的全黑色,因为黑色像素点不需要发光,所以可以达到非常高的对比度。此外,OLED屏幕的响应速度...

ltpo屏幕和oled屏幕哪个好介绍

LTPS(低温多晶硅)屏幕和OLED(有机发光二极管)屏幕是目前市场上主要的显示技术之一。两者各有优势,下面是它们的介绍:LTPS屏幕:LTPS屏幕采用低温多晶硅技术制造,具有以下特点:1. 高分辨率和较高的像素密度,能够呈现更清晰、细腻的图像。2. 良好的色彩还原度和广视角,使得画面在各个角度都能保持较好...

oled显示屏和XDR显示屏有什么不同?

OLED(有机发光二极管)屏则是一种自发光显示技术。每个像素都可以独立发光,这使得OLED屏幕能够实现完美的黑色(因为黑色像素可以完全不发光),并且具有非常高的对比度和宽广的视角。此外,OLED屏幕还具有省电、轻薄、可弯曲等优点。2. 性能特点 XDR显示屏的特点是高亮度、高对比度和高色彩精度。例如,...

oled lcd led区别

LED(发光二极管)是一种半导体器件,当施加电压时,载流子在半导体中发生反应,释放出可见光。而LCD(液晶显示器)则是通过控制半导体发光二极管来形成图像,通常由多个红灯构成。OLED(有机发光二极管)则更为独特,它在稳定的电压驱动下,电子和空穴在特定层中相遇,激发发光分子,产生丰富的色彩和更高的...

Oled器件 oled的意思 OLED有机材料 oled有几层材料 屏幕OLED是什么意思 有机半导体发光器件 OLED是什么屏幕 显像管被淘汰了吗 OLED材质
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
吃生蒜肚子疼什么原因 菜鸟裹裹怎么设置亲友隐私 菜鸟裹裹设置亲友权限方法介绍 小米手机掉在地上后出现屏幕一块不同颜色的线 用不了 小米坏了怎么维修多少钱啊 “臣不得越官而有功”为什么不能在现代使用 菜鸟怎么不让亲友看到包裹信息 不让亲友看到包裹信息方法一览 越官的解释越官的解释是什么 B75主板,i5 3570,能支持NVIDIA RTX2070显卡吗?能支持 1070ti吗?_百度... 土方工程多少钱一平方 两人发生口角后,赤手空拳攻击对方与持械攻击对方在法律上有区别吗? 考研复试没过会通知本人吗? OLED的原理? 请问考研学校面试多少天才知道结果 LED和OLED有什么区别? 考研复试结果什么时候出? 为什么OLED像素驱动需要2T1C结构 中山大学考研复试结果一般是什么时候公布? oled为什么比lcd电路要复杂 考研复试也通过了是否能被录取 一般考研复试结果多久通知 2021考研复试成绩什么时候出? 考研复试多久出结果 怎样煮鸡汤不油腻? 鸡汤怎么做才能让它不油腻 炖鸡用什么可以不油腻? 考研复试结果当天出吗 鸡汤怎么熬会比较营养,比较好喝,并且也不油腻? 鸡汤怎样炖不会太油 如何炖鸡汤清淡不油腻 煲鸡汤要怎么做才会不油腻? 考研复试完当天能知道结果吗 考研复试一般多久出结果 如何看懂pmos管电路设计 oled 研究生复试成绩公布和拟录取是一回事吗?还是说现公布复试成绩,然后过段... 在一些OLED驱动电路中,有时候可以看到TFT形成串并联的组合,不知道这样制程到底起什么作用 考研复试结果不好,应该怎么办? 大学考研复试结果什么时候出来 OLED显示屏的技术功能 速度快了OLED会花屏,为什么 研究生复试后最终结果大概什么时候出来 液晶屏OLEDOLED是干嘛的? OLED成像原理是什么? OLED风生水起 究竟OLED和LED有什么区别 液晶屏幕 冷光屏(OLED) 变暗,一般是升压电路的问题,但升压电路 一般哪个元件容易出问题?电容?二极管 万宝龙笔杆上有F的 粘纸是什么意思 万宝龙钢笔如何看f尖还是ef 万宝龙F尖钢笔适合书写汉字吗? 万宝龙钢笔鼻尖上有AU585,笔身上有F,是什么型号的,多少钱? 万宝龙钢笔国内最小只要F尖,请问ef哪来的 万宝龙钢笔f是那哪一款