发布网友 发布时间:2022-04-23 08:25
共1个回答
热心网友 时间:2022-06-18 08:24
深度学习作为机器学习的典范,在各领域显示出了广阔的前景。
深度学习最大的特点在于从大量无关数据中获取有用信息,已经在很多实际中得到应用:从Netflix著名的电影推荐系统到Google的无人驾驶,从创造艺术和文学写作到各种预测,都在使用深度学习模型。
很多转行人士在学习深度学习算法时,往往会对算法的数学推导感到吃力,无法理解具体核心参数表示的物理意义,等弄懂算法原理后,面对实际问题,依然不知道如何利用算法解决。
造成这种普遍现象的原因,主要在于学习者数学基础不扎实、实践经验不足。
人工智能是一个将数学、算法理论和工程实践紧密结合的领域,是数学、概率论、统计学、各种数学理论的体现。机器学习作为实现人工智能的主流方法,最重要的基础就是数学和编程。对于普通程序员,C /C++、Python等编程能力比较强,但数学基础却相对薄弱。数学作为表达与刻画机器学习模型的工具,是深入理解机器学习算法原理的基石,也是算法创新的基础技能。
为了帮助同学们突破瓶颈、更快地掌握深度学习技术,中公教育联合中科院自动化研究所专家,强力推出人工智能《深度学习》课程,让大家学有所成、真正掌握机器学习模型以及算法背后的原理。
7月6号首期开班,中科院自动化所专家全程直播教学,带领大家体验系统架构设计、关键算法选取、核心模块开发、识别效果测试等实际项目建设的全流程,并重点掌握核心AI模块的开发环节,使大家在结业后能够直接上手从事技术岗位工作,无需二次熟悉。