Google人工智能击败欧洲围棋冠军,AlphaGo 究竟是怎么做到的
发布网友
发布时间:2022-10-08 20:58
我来回答
共1个回答
热心网友
时间:2023-11-18 02:12
因为程序改进过,选点,大局观的判断有了不小的进步。也修复了以前的bug,棋力有了突破性提高,
从人工智能技术发展上看,DeepMind使用了“深度学习”技术,而非象俞斌估计的和职业高手合作。电脑通过海量学习人类高手的棋谱,用深度神经网络快速模拟出人的招法,下出来的棋就很象人了。樊麾二段说:“如果没人告诉我,我会想对手下得有一点怪,但肯定是个很强的棋手,一个真正的人”。
而DeepMind小组在搜索技术上取得了更大突破。跟Darkforest相似,AlphaGo用一个深度神经网络(policy network,“策略网络”)减少搜索的选点,象人类高手一样,只考虑少数几个可能的选点。此外,他们还建立了另一个深度神经网络(value network,“值网络”),象人类高手一样,思考到某个局面就有了结论,不必象之前的蒙特卡洛模拟那样下到终局,极大地减小了搜索的深度。
DeepMind引入的另一个逆天的高招是,让围棋人工智能自己和自己下,总结经验,自我不断提高!
这个人工智能自学习的要点是,不需要告诉电脑人类的经验,就让它自己玩这些电脑游戏,只是给出玩的分数。电脑看着分数不断纠正自己的策略,最后就发展出比人类还强的电游技术。这次的AlphaGo也用了这个技术,这又是比其它电脑围棋程序强的地方。从Nature的文章看,DeepMind的绝招是,用50台电脑让AlphaGo不断和自己对弈,下了3000万盘棋!然后每盘棋选取一个局面(不多选,以避免同一盘棋中不同局面之间的相关性),根据这盘棋的最终结果判断局势优劣。这样获得了3000万个训练数据,用于训练生成“值网络”。暴力生成这么多数据需要海量的计算资源和投入,确实只有谷歌这样的大公司敢想敢做。可以看出他们的战略是智能和蛮力两手抓,两手都要硬,哪个合适就用哪个,并且互相帮助。
通过这样三招,DeepMind小组确实在围棋人工智能上取得了巨大突破。而且研究方法的潜力很大,从这个方向上走,最终象“更深的蓝”一样战胜人类最高手是完全可以想象的。一个月前,DeepMind小组就报告说围棋人工智能取得了巨大突破,会战胜人类,但当时棋迷与职业棋手并未留意。现在有了棋谱,又有了技术细节,就显得可信多了。