统计学里的标准差和标准误有什么差别?
发布网友
发布时间:2022-04-23 04:16
我来回答
共4个回答
热心网友
时间:2022-06-04 22:55
展开1全部在日常的统计分析中,标准差和标准误是一对十分重要的统计量,两者有区别也有联系。但是很多人却没有弄清其中的差异,经常性地进行一些错误的使用。对于标准差与标准误的区别,很多书上这样表达:标准差表示数据的离散程度,标准误表示抽样误差的大小。这样的解释可能对于许多人来说等于没有解释。
其实这两者的区别可以采用数据分布表达方式描述如下:如果样本服从均值为μ,标准差为δ的正态分布,即X~N(μ, δ2),那么样本均值服从均值为0,标准差为δ2/n的正态分布,即~ N(μ,δ2/n)。这里δ为标准差,δ/n1/2为标准误。明白了吧,用统计学的方法解释起来就是这么简单。
可是,实际使用中总体参数往往未知,多数情况下用样本统计量来表示。那么,关于这两者的区别可以这样表述:标准差是样本数据方差的平方根,它衡量的是样本数据的离散程度;标准误是样本均值的标准差,衡量的是样本均值的离散程度。而在实际的抽样中,习惯用样本均值来推断总体均值,那么样本均值的离散程度(标准误)越大,抽样误差就越大。所以用标准误来衡量抽样误差的大小。
在此举一个例子。比如,某学校共有500名学生,现在要通过抽取样本量为30的一个样本,来推断学生的数学成绩。这时可以依据抽取的样本信息,计算出样本的均值与标准差。如果我们抽取的不是一个样本,而是10个样本,每个样本30人,那么每个样本都可以计算出均值,这样就会有10个均值。也就是形成了一个10个数字的数列,然后计算这10个数字的标准差,此时的标准差就是标准误。但是,在实际抽样中我们不可能抽取10个样本。所以,标准误就由样本标准差除以样本量来表示。当然,这样的结论也不是随心所欲,而是经过了统计学家的严密证明的。
在实际的应用中,标准差主要有两点作用,一是用来对样本进行标准化处理,即样本观察值减去样本均值,然后除以标准差,这样就变成了标准正态分布;而是通过标准差来确定异常值,常用的方法就是样本均值加减n倍的标准差。标准误的作用主要是用来做区间估计,常用的估计区间是均值加减n倍的标准误。
热心网友
时间:2022-06-04 22:55
1、意义不同:标准差是数据精密度的衡量指标。标准误差是量度结果精密度的指标。
2、反映的东西不同:标准差反映了整个样本对样本平均数的离散程度。标准误差反映样本平均数对总体平均数的变异程度。
3、使用范围不同:标准差一般用于表示一组样本变量的分散程度。标准误差一般用于统计推断中,主要包括假设检验和参数估计,如样本平均数的假设检验、参数的区间估计与点估计等。
参考资料:
百度百科-标准差
百度百科-标准误差
热心网友
时间:2022-06-04 22:56
标准差与标准误(标准误差)的区别有:
1、意义不同:标准差是数据精密度的衡量指标。标准误差是量度结果精密度的指标。
2、反映的东西不同:标准差反映了整个样本对样本平均数的离散程度。标准误差反映样本平均数对总体平均数的变异程度。
3、使用范围不同:标准差一般用于表示一组样本变量的分散程度。标准误差一般用于统计推断中,主要包括假设检验和参数估计,如样本平均数的假设检验、参数的区间估计与点估计等。
参考资料:
百度百科-标准差
百度百科-标准误差
热心网友
时间:2022-06-04 22:56
1 标准差
标准差(S 或SD) ,是用来反映变异程度,当两组观察值
在单位相同、均数相近的情况下,标准差越大,说明观察值间
的变异程度越大。即观察值围绕均数的分布较离散,均数的
代表性较差。反之,标准差越小,表明观察值间的变异较小,
观察值围绕均数的分布较密集,均数的代表性较好。在医学
研究中,对于标准差的大小,原则上应该控制在均值的12 %
以内,如果标准差过大,将直接影响研究的准确性。
数理统计表明,在标准正态分布曲线下的面积是有规律
性的,根据这一规律,人们经常用均数加减标准差来计算样
本观察值数量的理论分布,并以此来鉴定样本的代表性。
即: x ±110 s 表示68127 %的观察值在此范围之内; x ±
1196 s 表示95 %的观察值在此范围内; x ±2158 s 表示
99 %的观察值在此范围内。
如果取得的样本资料的实际分布与理论分布非常接近,
证明该样本具有代表性。反之,则需要重新修正抽样方法或
样本含量。x ±1196 s 是确定正常值的方法,经常在工作中被
采用,也称为95 %正常值范围。
2 标准误
标准误( Sx 或S E ) ,是样本均数的抽样误差。在实际工
作中,我们无法直接了解研究对象的总体情况,经常采用随
机抽样的方法,取得所需要的指标,即样本指标。样本指标
与总体指标之间存在的差别,称为抽样误差,其大小通常用
均数的标准误来表示。
数理统计证明,标准误的大小与标准差成正比,而与样
本含量( n ) 的平分根成反比,即: Sx = S/ n 这就是标准误
的计算方法。
抽样研究的目的之一,是用样本指标来估计总体指标。
例如:用样本均数来估计总体均数。由于两者间存在抽样误
差,且不同的样本可能得到不同的估计值,因此,常用“区间
估计”的方法,来估计总体均数的范围。即: X ±1196 Sx 表
示总体均数的95 %可信区间; X ±2158 Sx 表示总体均数的
99 %可信区间。
95 %可信区间指的是:在X ±1196 Sx 范围中,包括总体
均数的可能性为95 % ,也就是说,在100 次抽样估计中,可能
有95 次正确(包括总体均数) ,有5 次错误(不包括总体均
数) 。99 %可信区间也是这个道理,只是包括的范围更大。
在实际工作中,由于抽取的样本较小,不呈标准正态分
布( u 分布) ,而遵从t 分布,所以常用t 值代替1196 或2158。
可在t 值表上查出不同自由度( n ′) 下、不同界值时的t 值。
可见到自由度越小, t 值越大,当自由度逐渐增大时, t 值也
逐渐接近1196 或2158 ,当n ′= ∞时, t 值就完全被其代替
了。所以,我们常用X ± t 0105 Sx 表示总体均数的95 %可
信区间,用x ± t 0101 Sx 表示总体均数的99 %可信区间。
综上所述,标准差与标准误尽管都是反映变异程度的指
标,但这是两个不同的统计学概念。标准差描述的是样本中
各观察值间的变异程度,而标准误表示每个样本均数间的变
异程度,描述样本均数的抽样误差,即样本均数与总体均数
的接近程度,也可以称为样本均数的标准差。二者不可混
淆。
由此可见,在众多的医刊上出现的x ±s 的表示方法是
错误的。原因就是混淆了二者的概念。当两样本均数进行
比较时,正确的用法应该是x ±t0105( n′) Sx 。