菱形abcd和cefg,h为af中点,角b=角dce=60°。求证:dh⊥hg
发布网友
发布时间:2022-09-26 20:12
我来回答
共1个回答
热心网友
时间:2023-10-03 06:27
∵正方形ABCD和正方形CEFG,M为AF的中点,
∴∠DAM=∠HFM,AM=MF,∠AMD=∠FMH.
∴△MAD≌△MFH.
∴DM=MH,AD=FH.
∴ED=EH,△DEH为等腰直角三角形,
∴△MDE为等腰直角三角形;
(2)△MDE为等腰直角三角形.
(3)如图,延长DM到H使DM=MH,连接EH,延长FH于DC的延长线交于点N.
易证△ADM≌△FHM,∴AD=FH=CD.
∵∠DCE+∠NCG=90°,∠EFH+∠NFG=90°,
∴∠DCE=∠EFH.
∴△DCE≌△FHE.
∴DE=EH,∠DEC=∠FEH,∠DEH=90°.
∵DM=EM,
∴△MDE为等腰直角三角形.
热心网友
时间:2023-10-03 06:27
∵正方形ABCD和正方形CEFG,M为AF的中点,
∴∠DAM=∠HFM,AM=MF,∠AMD=∠FMH.
∴△MAD≌△MFH.
∴DM=MH,AD=FH.
∴ED=EH,△DEH为等腰直角三角形,
∴△MDE为等腰直角三角形;
(2)△MDE为等腰直角三角形.
(3)如图,延长DM到H使DM=MH,连接EH,延长FH于DC的延长线交于点N.
易证△ADM≌△FHM,∴AD=FH=CD.
∵∠DCE+∠NCG=90°,∠EFH+∠NFG=90°,
∴∠DCE=∠EFH.
∴△DCE≌△FHE.
∴DE=EH,∠DEC=∠FEH,∠DEH=90°.
∵DM=EM,
∴△MDE为等腰直角三角形.