发布网友 发布时间:2022-04-23 04:39
共1个回答
热心网友 时间:2023-08-24 16:14
概率图模型的表示方法,研究如何利用概率网络中的独立性来简化联合概率分布的方法表示。概率图模型能有效处理不确定性推理,从样本数据中准确高效地学习概率图模型是其在实际应用中的关键问题.概率图模型的表示由参数和结构两部分组成,PGM的分类如图1. :
(1)根据边有无方向性分类;
(2)根据表示的抽象级别不同分类。
根据边有无方向性,PGM可以分为三类
(1)有向图模型,也称为贝叶斯网(BayesianNetwork,BN),其网络结构使用有向无环图;
(2)无向图模型,也称为马尔可夫网(MarkovNetwork,MN),其网络结构为无向图;
(3) 局部有向模型,即同时存在有向边和无向边的模型,包括条件随机场(ConditionalRandomField,CRF)和链图(ChainGraph). 根据表示的抽象级别不同,PGM可分两类:
(1)基于随机变量的概率图模型,如贝叶斯网、马尔可夫网、条件随机场和链图等;
(2)基于模板的概率图模型.这类模型根据应用场景不同又可分为两种:
(a)为暂态模型,包括动态贝叶斯网(Dynamic Bayesian Network,DBN)[6]和状态观测模型,其中状态观测模型又包括线性动态系统(Linear Dynamic System,LDS)和隐马尔可夫模型(Hidden Markov Model,HMM);
(b)为对象关系领域的概率图模型,包括盘模型(Plate Model,PM)、概率关系模型(Probabilistic Relational Model,PRM)和关系马尔可夫网(Relational Markov Network,RMN). 总结如下
(1)单个节点上的条件概率分布的表示模型及其引起的独立性,包括表格CPD、确定性CPD、特定上下文CPD、因果影响CPD、高斯模型和混合模型,并把单个分布模型推广到指数分布族中。
(2)贝叶斯网络中的独立性以及图与概率分布的关系,高斯分布和指数分布族的贝叶斯网络表示理论。马尔可夫网络的参数化问题及其独立性,高斯分布和指数分布族的马尔可夫网络表示理论。
(3)两种局部有向图模型:条件随机场和链图。
(4)基于模板的概率模型表示,包括动态贝叶斯网络和状态观测模型这两种暂态模型,
(5)盘模型和概率关系模型这两种对象关系领域的有向概率模型,对象关系领域的无向表示。