发布网友 发布时间:2022-04-22 06:58
共1个回答
热心网友 时间:2022-06-17 02:27
D(X) = E{[X - E(X)]^2};(1)
=E(X^2) - (EX)^2;(2)
(1)式是方差的离差表示,,如果不懂,可以记忆(2)式(2)式表示:方差 = X^2的期望 - X的期望的平方。
X和X^2都是随机变量,针对于某次随机变量的取值,
例如: 随机变量X服从“0 - 1”:取0概率为q,取1概率为p,p+q=1 则: 对于随即变量X的期望 E(X) = 0*q + 1*p = p 同样对于随即变量X^2的期望 E(X^2) = 0^2 * q + 1^2 * p = p
所以由方差公式(2)得:D(X) = E(X^2) - (EX)^2 = p - p^2 = p(1-p) = pq 无论对于X或者X^2,都是一次随机变量,或者一次实验,不是什么未知的函数, 要通过题目的的随机变量到底是服从什么分配,然后才可以判断出该随机变量具有什么性质或者可以得出什么条件。
扩展资料:
对于集合{xn,n=1,2,……}中的任何一个子集A,事件“X在A中取值”即“X∈A”的概率为
P{X∈A}=∑Pn
特别的,如果一个试验所包含的事件只有两个,其概率分布为
P{X=x1}=p(0<p<1)
P{X=x2}=1-p=q
这种分布称为两点分布。 如果x1=1,x2=0,有
P{X=1}=p
P{X=0}=q
这时称X服从参数为p的0-1分布,它是离散型随机变量分布中最简单的一种。由于是数学家伯努利最先研究发现的,为了纪念,也把服从这种分布的试验叫伯努利试验。习惯上,把伯努利的一种结果称为“成功”,另一种称为“失败”。
参考资料来源:百度百科-离散型随机变量