发布网友 发布时间:2022-05-30 21:32
共1个回答
热心网友 时间:2023-11-20 21:04
下面是对π(x)更好的估计:
, 其中. 而关系式右边第二项是误差估计,详见大O符号。 下表比较了π(x),x/ln x和Li(x): x π(x) π(x) - x/ln(x) Li(x) - π(x) x/π(x)
(如图所示)
素数定理可以给出第n个素数p(n)的渐近估计:它也给出从整数中抽到素数的概率。从不大于n的自然数随机选一个,它是素数的概率大约是1/ln n。 这定理的式子於1798年法国数学家勒让德提出。1896年法国数学家哈达玛(JacquesHadamard)和比利时数学家普森(Charles Jean de la Vallée-Poussin)先後独立给出证明。证明用到了复分析,尤其是黎曼ζ函数。 因为黎曼ζ函数与π(x)关系密切,关于黎曼ζ函数的黎曼猜想对数论很重要。一旦猜想获证,便能大大改进素数定理误差的估计。1901年瑞典数学家Helge von Koch证明出,下式与黎曼猜想等价:
至于大O项的常数则还未知道。
在1948年, 塞尔伯格和保罗·埃尔德什首次给出素数定理的初等证明.