发布网友 发布时间:2022-07-29 04:27
共1个回答
好二三四 时间:2022-07-29 08:48
a的转置乘以a等于a行列式的平方,转置是一个数学名词,将A的所有元素绕着一条从第1行第1列元素出发的右下方45度的射线作镜面反转,即得到A的转置。
行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。
热心网友 时间:2024-01-19 17:52
a的转置乘以a等于a行列式的平方。
设A为m×n阶矩阵(即m行n列),第i行j列的元素是aij,即A=(aij)m×n定义A的转置为这样一个n×m阶矩阵B,满足B=(aji),即bij=aji(B的第i行第j列元素是A的第j行第i列元素)。
记AT=B,直观来看将A的所有元素绕着一条从第1行第1列元素出发的右下方45度的射线作镜面反转,即得到A的转置。
一个矩阵M,把它的第一行变成第一列,第二行变成第二列,最末一行变为最末一列,从而得到一个新的矩阵N,这一过程称为矩阵的转置。
历史:
矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究,阿瑟·凯利,矩阵论奠基人在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。
这一概念由19世纪英国数学家凯利首先提出,作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。
在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变数,但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。
热心网友 时间:2024-01-19 17:53
a的转置乘以a等于a行列式的平方。
设A为m×n阶矩阵(即m行n列),第i行j列的元素是aij,即A=(aij)m×n定义A的转置为这样一个n×m阶矩阵B,满足B=(aji),即bij=aji(B的第i行第j列元素是A的第j行第i列元素)。
记AT=B,直观来看将A的所有元素绕着一条从第1行第1列元素出发的右下方45度的射线作镜面反转,即得到A的转置。
一个矩阵M,把它的第一行变成第一列,第二行变成第二列,最末一行变为最末一列,从而得到一个新的矩阵N,这一过程称为矩阵的转置。
历史:
矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究,阿瑟·凯利,矩阵论奠基人在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。
这一概念由19世纪英国数学家凯利首先提出,作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。
在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变数,但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。