发布网友 发布时间:2022-04-22 17:15
共1个回答
热心网友 时间:2023-11-13 17:28
对于函数值域问题,高考似乎不再单独命题,经常会以最值问题、换元形式出现,所以也不容忽视。尤其是小编最近在整理圆锥曲线问题,发现在圆锥曲线压轴题的第二问中经常会出现一类函数求最值或者值域问题,现整理如下,希望对学生们有帮助。这类函数就是分式型函数。这类问题有一次式比一次式,二次式比一次式,一次式比二次式,二次式比二次的形式,现在对这类问题进行整理汇总。
分析:解决这类问题,采取的方式是分离常数。
分析:由于此类函数图像可以经过反比列函数图像平移得出,所以解决在给定区间内的值域问题,可以画出函数图像,求出其值域。
小结:函数关系式是一次式比一次式的时候,发现在此类函数的实质是反比例函数通过平时得出的,因此可以作出其图像,去求函数的值域与最值。
根据函数单调性,可以做出此类函数的大致图像,因为这类函数在第一象限的图像象一个“红对勾”,所以称这类函数是对勾函数,通过图像求出其值域。当然也可以采用基本不等式来解决其图像。
分析:当定义域为R时,采用判别式法求此类函数的值域。当定义域不为R时,不应采用此法,否则有可能出错。此时,要根据函数关系的特征,采用其他方法。
分析:当定义域不为R时,不能采用判别式法求此类函数的值域。要根据函数关系的特征,采用分离常数转化成例5的形式。
以上是求此类函数的常见方法,但同学们在解题过程中。不要拘泥以上方法,要根据具体函数的特征采用相对应的方法,多思考,举一反三,那以后解决此类问题就很容易了。尤其是在圆锥曲线问题中,能够从复杂的关系式中找出此类问题的模具,进而轻松解决取值范围和最值问题。