问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

LightGBM 如何确定最佳迭代次数?

发布网友 发布时间:2022-04-22 13:56

我来回答

1个回答

热心网友 时间:2023-11-07 16:34

LightGBM中实现了哪些梯度增强方法,它们有什么区别?一般来说,哪些参数是重要的?哪些正则化参数需要调整?如何调整lightGBM参数在python?梯度提升的方法

使用LightGBM,你可以运行不同类型的渐变增强提升方法。你有:GBDT、DART和GOSS,这些可以通过“boosting”参数指定。

在下一节中,我将对这些方法进行解释和比较。

梯度提升决策树(GBDT)

该方法是本文首先提出的传统梯度提升决策树,也是XGBoost和pGBRT等优秀库背后的算法。

由于其精度高、效率高、稳定性好,目前已得到广泛的应用。你可能知道gbdt是一个决策树的集合模型但是它到底是什么意思呢?

让我来告诉你要点。

它基于三个重要原则:

弱学习者(决策树)梯度优化提升技术所以在gbdt方法中,我们有很多决策树(弱学习者)。这些树是按顺序构建的:

首先,树学习如何适应目标变量第二棵树学习如何适合残差(差异)之间的预测,第一棵树和地面*第三棵树学习如何匹配第二棵树的残差,以此类推。所有这些树都是通过传播整个系统的误差梯度来训练的。

gbdt的主要缺点是,在每个树节点中找到最佳分割点非常耗时,而且会消耗内存。其他的提升方法试图解决这个问题。

DART梯度提升

在这篇优秀的论文中(arxiv/1505.01866),你可以学习所有关于DART梯度提升的东西,这是一种使用dropout(神经网络中的标准)的方法,来改进模型正则化和处理一些其他不太明显的问题。

也就是说,gbdt存在过度专门化(over-specialization)的问题,这意味着在以后的迭代中添加的树往往只会影响对少数实例的预测,而对其余实例的贡献则可以忽略不计。添加dropout会使树在以后的迭代中更加难以专门化那些少数的示例,从而提高性能。

lgbm goss基于梯度的单边采样

事实上,将该方法命名为lightgbm的最重要原因就是使用了基于本文的Goss方法。Goss是较新的、较轻的gbdt实现(因此是“light”gbm)。

标准的gbdt是可靠的,但在大型数据集上速度不够快。因此goss提出了一种基于梯度的采样方法来避免搜索整个搜索空间。我们知道,对于每个数据实例,当梯度很小时,这意味着不用担心数据是经过良好训练的,而当梯度很大时,应该重新训练。这里我们有两个方面,数据实例有大的和小的渐变。因此,goss以一个大的梯度保存所有数据,并对一个小梯度的数据进行随机抽样(这就是为什么它被称为单边抽样)。这使得搜索空间更小,goss的收敛速度更快。

让我们把这些差异放在一个表格中:

注意:如果你将增强设置为RF,那么lightgbm算法表现为随机森林而不是增强树! 根据文档,要使用RF,必须使用baggingfraction和featurefraction小于1。

正则化

在这一节中,我将介绍lightgbm的一些重要的正则化参数。显然,这些是您需要调优以防止过拟合的参数。

您应该知道,对于较小的数据集(<10000条记录),lightGBM可能不是最佳选择。在这里,调优lightgbm参数可能没有帮助。

此外,lightgbm使用叶向树生长算法,而xgboost使用深度树生长算法。叶向方法使树的收敛速度更快,但过拟合的几率增加。

注意:如果有人问您LightGBM和XGBoost之间的主要区别是什么?你可以很容易地说,它们的区别在于它们是如何实现的。

根据lightGBM文档,当面临过拟合时,您可能需要做以下参数调优:

使用更小的max_bin使用更小的num_leaves使用mindatainleaf和minsumhessianin_leaf通过设置baggingfraction和baggingfreq使用bagging_freq通过设置feature_fraction使用特征子采样使用更大的训练数据尝试lambdal1、lambdal2和mingainto_split进行正则化尝试max_depth以避免树的深度增长在下面的部分中,我将更详细地解释这些参数。

lambda_l1

Lambdal1(和lambdal2)控制l1/l2,以及mingainto_split用于防止过拟合。我强烈建议您使用参数调优(在后面的小节中讨论)来确定这些参数的最佳值。

num_leaves

numleaves无疑是控制模型复杂性的最重要参数之一。通过它,您可以设置每个弱学习者拥有的叶子的最大数量。较大的numleaves增加了训练集的精确度,也增加了因过度拟合而受伤的几率。根据文档,一个简单的方法是numleaves = 2^(maxdepth)但是,考虑到在lightgbm中叶状树比层次树更深,你需要小心过度拟合!因此,必须同时使用maxdepth调优numleaves。

子采样

通过子样例(或bagging_fraction),您可以指定每个树构建迭代使用的行数百分比。这意味着将随机选择一些行来匹配每个学习者(树)。这不仅提高了泛化能力,也提高了训练速度。

我建议对基线模型使用更小的子样本值,然后在完成其他实验(不同的特征选择,不同的树结构)时增加这个值。

feature_fraction

特征分数或子特征处理列采样,LightGBM将在每次迭代(树)上随机选择特征子集。例如,如果将其设置为0.6,LightGBM将在训练每棵树之前选择60%的特性。

这个功能有两种用法:

可以用来加速训练吗可以用来处理过拟合吗

max_depth

该参数控制每棵经过训练的树的最大深度,将对:

num_leaves参数的最佳值模型的性能训练时间注意,如果您使用较大的max_depth值,那么您的模型可能会对于训练集过拟合。

max_bin

装箱是一种用离散视图(直方图)表示数据的技术。Lightgbm在创建弱学习者时,使用基于直方图的算法来寻找最优分割点。因此,每个连续的数字特性(例如视频的视图数)应该被分割成离散的容器。

此外,在这个GitHub repo(huanzhang12/lightgbm-gpu)中,你可以找到一些全面的实验,完全解释了改变max_bin对CPU和GPU的影响。

如果你定义maxbin 255,这意味着我们可以有255个唯一的值每个特性。那么,较小的maxbin会导致更快的速度,较大的值会提高准确性。

训练参数

当你想用lightgbm训练你的模型时,一些典型的问题可能会出现:

训练是一个耗时的过程处理计算复杂度(CPU/GPU RAM约束)处理分类特征拥有不平衡的数据集定制度量的需要需要对分类或回归问题进行的调整在本节中,我们将尝试详细解释这些要点。

num_iterations

Num_iterations指定增强迭代的次数(要构建的树)。你建立的树越多,你的模型就越精确,代价是:

较长的训练时间过拟合的可能性更高从较少的树开始构建基线,然后当您想从模型中挤出最后的%时增加基线。

建议使用更小的learningrate和更大的numiteration。此外,如果您想要更高的numiteration,那么您应该使用earlystopping_rounds,以便在无法学习任何有用的内容时停止训练。

earlystoppingrounds

如果验证度量在最后一轮停止后没有改进,此参数将停止训练。这应该与一些迭代成对地进行定义。如果你把它设置得太大,你就增加了过拟合的变化(但你的模型可以更好)。

经验法则是让它占num_iterations的10%。

lightgbm categorical_feature

使用lightgbm的优势之一是它可以很好地处理分类特性。是的,这个算法非常强大,但是你必须小心如何使用它的参数。lightgbm使用一种特殊的整数编码方法(由Fisher提出)来处理分类特征

实验表明,该方法比常用的单热编码方法具有更好的性能。

它的默认值是“auto”,意思是:让lightgbm决定哪个表示lightgbm将推断哪些特性是绝对的。

它并不总是工作得很好,我强烈建议您简单地用这段代码手动设置分类特性

cat_col = dataset_name.select_dtypes(‘object’).columns.tolist()

但是在幕后发生了什么,lightgbm是如何处理分类特征的呢?

根据lightgbm的文档,我们知道树学习器不能很好地使用一种热编码方法,因为它们在树中深度生长。在提出的替代方法中,树形学习器被最优构造。例如,一个特征有k个不同的类别,有2^(k-1) -1个可能的划分,通过fisher方法,可以改进到k * log(k),通过找到分类特征中值排序直方图的最佳分割方式。

isunbalance vs scalepos_weight

其中一个问题,你可能面临的二分类问题是如何处理不平衡的数据集。显然,您需要平衡正/负样本,但如何在lightgbm中做到这一点呢?

lightgbm中有两个参数允许你处理这个问题,那就是isunbalance和scalepos_weight,但是它们之间有什么区别呢?

当您设置Is_unbalace: True时,算法将尝试自动平衡占主导地位的标签的权重(使用列集中的pos/neg分数)

如果您想改变scaleposweight(默认情况下是1,这意味着假设正负标签都是相等的),在不平衡数据集的情况下,您可以使用以下公式来正确地设置它

sample_pos_weight = number of negative samples / number of positive samples

lgbm函数宏指令(feaval)

有时你想定义一个自定义评估函数来测量你的模型的性能,你需要创建一个“feval”函数。

Feval函数应该接受两个参数:

preds 、train_data

并返回

evalname、evalresult、ishigherbetter

让我们一步一步地创建一个自定义度量函数。

定义一个单独的python函数

def feval_func(preds, train_data): # Define a formula that evaluates the results return ('feval_func_name', eval_result, False)

使用这个函数作为参数:

print('Start training...') lgb_train = lgb.train(..., metric=None, feval=feval_func)

注意:要使用feval函数代替度量,您应该设置度量参数 metric “None”。

分类参数与回归参数

我之前提到的大多数事情对于分类和回归都是正确的,但是有些事情需要调整。

具体你应该:

lightgbm最重要的参数

我们已经在前面的部分中回顾并了解了有关lightgbm参数的知识,但是如果不提及Laurae令人难以置信的基准测试,那么关于增强树的文章将是不完整的。

您可以了解用于lightGBM和XGBoost的许多问题的最佳默认参数。

你可以查看这里,但一些最重要的结论是:

注意:绝对不要理会任何参数值的默认值,并根据您的问题进行调整。 也就是说,这些参数是超参数调整算法的一个很好的起点。

Python中的Lightgbm参数调整示例

最后,在解释完所有重要参数之后,该进行一些实验了!

我将使用最受欢迎的Kaggle竞赛之一:Santander Customer Transaction Prediction. 交易预测

我将使用本文介绍如何在任何脚本中的Python中运行超参数调整。

在开始之前,一个重要的问题! 我们应该调整哪些参数?

请注意您要解决的问题,例如,Santander 数据集高度不平衡,在调整时应考虑到这一点!

一些参数是相互依赖的,必须一起调整。 例如,mindatainleaf取决于训练样本和numleaves的数量。

注意:为超参数创建两个字典是一个好主意,一个字典包含您不想调整的参数和值,另一个字典包含您想要调整的参数和值范围。

SEARCH_PARAMS = {'learning_rate': 0.4, 'max_depth': 15, 'num_leaves': 20, 'feature_fraction': 0.8, 'subsample': 0.2} FIXED_PARAMS={'objective': 'binary', 'metric': 'auc', 'is_unbalance':True, 'boosting':'gbdt', 'num_boost_round':300, 'early_stopping_rounds':30}
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
传奇世界退师和出师同样能得到声望吗 声望可以转让吗? 传奇世界 声望怎么弄,最快弄声望的方法? 传奇世界 声望问题徒弟问题 天龙八部2中的哪个门派最牛逼啊 天龙八部手游哪个门派厉害 天龙八部手游门派排名 天龙八部里,三大最强门派,第一实至名归! miui13怎么开启dc调光 小米14怎么样小米14有没有DC调光功能【详解】 小米14dc调光是什么意思 基于误差准则和循环迭代的匹配滤波算法 软件测试中,版本和迭代有什么区别? 跪求高手指点 用“我是……”造句 Jacobi迭代法和Gauss-Seidel迭代法有什么区别 重赏!!!求matlab习题答案!!! 到底什么是迭代算法?与递推有什么区别? 迭代计算的终止条件可以是前后两次计算结果的差别小于某个值吗? 调用递归函数的开销和迭代的的差距有多大 迭代模型和增量模型有什么异同 迭代法和递推法有什么区别? gauss-seidel迭代法和tdma迭代法的区别 迭代算法和递归算法的异同? 迭代次数讨论 为什么微信团队删不掉 梦见自己生了个男孩、可是家人都不理我、一会就长大了 梦见自己去生孩子,可是身边却没有一个亲人陪伴 做梦梦到生孩子了 梦见自己生孩子 然后孩子不见了 做梦自己生孩子了是怎么回事 孕妇梦见自己生孩子找不到了 设计模式中命令模式和迭代器模式的区别、对比 相关拟合曲线为什么不一次次迭代下去 C++ 的容器通过迭代器访问和通过下标访问有效率差别吗 为什么电脑待机后屏幕不亮 为什么我电脑自动休眠后,再用屏幕不亮 电脑睡眠后唤醒时屏幕不亮 电脑睡眠屏幕关闭之后主机可正常唤醒,但显示器不亮 为什么电脑进入睡眠模式后点开.屏幕不亮? 电脑开机屏幕不显示,鼠标键盘灯亮怎么办? 电脑进入休眠时候 怎么办啊 显示器不亮 待机时间长之后,显示器点不亮 电脑进入睡眠后开机黑屏是怎么回事 描述持之以恒的名言有什么 关于持之以恒的名言名句 笔记本电脑唤醒休眠后显示器点不亮 做事要持之以恒的句子名言 电脑进入休眠唤醒后,显示屏无显示 有关持之以恒的名言警句 做事要持之以恒的名言名句格言