矩阵的范数怎么求
发布网友
发布时间:2022-07-20 14:05
我来回答
共1个回答
好二三四
时间:2022-09-28 11:37
计算矩阵的范数公式:║A║1=max。矩阵范数(matrixnorm)是数学中矩阵论、线性代数、泛函分析等领域中常见的基本概念,是将一定的矩阵空间建立为赋范向量空间时为矩阵装备的范数。应用中常将有限维赋范向量空间之间的映射以矩阵的形式表现,这时映射空间上装备的范数也可以通过矩阵范数的形式表达。
矩阵本身所具有的性质依赖于元素的性质,矩阵由最初作为一种工具经过两个多世纪的发展,现在已成为独立的一门数学分支——矩阵论。而矩阵论又可分为矩阵方程论、矩阵分解论和广义逆矩阵论等矩阵的现代理论。
好二三四
时间:2022-09-28 11:37
计算矩阵的范数公式:║A║1=max。矩阵范数(matrixnorm)是数学中矩阵论、线性代数、泛函分析等领域中常见的基本概念,是将一定的矩阵空间建立为赋范向量空间时为矩阵装备的范数。应用中常将有限维赋范向量空间之间的映射以矩阵的形式表现,这时映射空间上装备的范数也可以通过矩阵范数的形式表达。
矩阵本身所具有的性质依赖于元素的性质,矩阵由最初作为一种工具经过两个多世纪的发展,现在已成为独立的一门数学分支——矩阵论。而矩阵论又可分为矩阵方程论、矩阵分解论和广义逆矩阵论等矩阵的现代理论。
热心网友
时间:2023-09-21 11:23
一般来讲矩阵范数除了正定性,齐次性和三角不等式之外,还规定其必须满足相容性:║XY║≤║X║║Y║。所以矩阵范数通常也称为相容范数。
如果║·║α是相容范数,且任何满足║·║β≤║·║α的范数║·║β都不是相容范数,那么║·║α称为极小范数。对于n阶实方阵(或复方阵)全体上的任何一个范数║·║,总存在唯一的实数k>0,使得k║·║是极小范数。
注:如果不考虑相容性,那么矩阵范数和向量范数就没有区别,因为mxn矩阵全体和mn维向量空间同构。引入相容性主要是为了保持矩阵作为线性算子的特征,这一点和算子范数的相容性一致,并且可以得到Mincowski定理以外的信息。
矩阵的范数怎么计算
计算矩阵的范数公式:║A║1=max。矩阵范数(matrixnorm)是数学中矩阵论、线性代数、泛函分析等领域中常见的基本概念,是将一定的矩阵空间建立为赋范向量空间时为矩阵装备的范数。应用中常将有限维赋范向量空间之间的映射以矩阵的形式表现,这时映射空间上装备的范数也可以通过矩阵范数的形式表达。矩阵本身...
标准曲线是否可以在Sievers Eclipse中自动实现?
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准品实...
矩阵范数公式是什么?
些矩阵范数不可以由向量范数来诱导,比如常用的Frobenius范数(也叫Euclid范数,简称F-范数或者E-范数):║A║F= ( ∑∑ aij^2 )^1/2 (A全部元素平方和的平方根)。容易验证F-范数是相容的,但当min{m,n}>1时F-范数不能由向量范数诱导(||E11+E22||F=2>1)。可以证明任一种矩阵范数总有...
矩阵范数有哪些常见的求法?
矩阵范数是衡量矩阵大小的一种方法,常见的求法有以下几种:1.一阶范数(列和范数):将矩阵的列向量相加,然后取绝对值之和。即||A||_1=∑|a_i|,其中a_i为矩阵A的第i列。2.二阶范数(谱范数):矩阵A的最大奇异值的平方。即||A||_2=max(σ_i)_,其中σ_i为矩阵A的特征值。3....
矩阵的范数
矩阵的1范数 :矩阵的每一列上的元素绝对值先求和,再从中取个最大的,(列和最大),上述矩阵A的1范数先得到[5,8,9],再取最大的最终结果就是:9。 矩阵的2范数 :矩阵 A 的最大特征值开平方根,上述矩阵A的2范数得到的最大结果是:10.0623。 矩阵的无穷范数 :矩阵的每一行上...
什么叫矩阵的范数?如何计算矩阵范数?
向量范数如Frobenius范数或Euclid范数(也称F-范数或E-范数),则是矩阵所有元素平方和的平方根,表示为║A║F = (∑∑ aij^2)^1/2。Frobenius范数虽相容,但在min{m,n}>1时,它不能由所有向量范数诱导,比如||E11+E22||F = 2就不等于1。矩阵范数与谱半径有密切关系。定理1表明谱半径ρ(...
矩阵的范数怎么求
1、矩阵的1范数:将矩阵沿列方向取绝对值求和,然后取最大值作为1范数。例如如下的矩阵,它的1范数求法如下:2、使用matlab计算结果如下:3、对于实矩阵,矩阵A的2范数定义为:A的转置与A乘积的最大特征值开平方根。对于以上矩阵,直接调用函数可以求得2范数为16.8481,如上图所示。使用定义计算的...
范数怎么求
先将矩阵沿列方向取绝对值求和,之后取最大值作为1范数。范数是具有“长度”概念的函数。在线性代数、泛函分析及相关的数学领域,范数是一个函数,其为向量空间内的所有向量赋予非零的正长度或大小。半范数反而可以为非零的向量赋予零长度。拥有范数的向量空间就是赋范向量空间。同样,拥有半范数的向量...
范数怎么求
将矩阵沿列方向取绝对值求和,然后取最大值作为1范数。对于实矩阵,矩阵A的2范数定义为:A的转置与A乘积的最大特征值开平方根。对于以上矩阵,直接调用函数可以求得2范数为16.8481,对于复矩阵,将转置替换为共轭转置,其他步骤与上一步相同。矩阵A的∞范数定义为先沿着行方向取绝对值之和,然后取最...
矩阵的范数是什么意思?
矩阵的1范数:将矩阵沿列方向取绝对值求和,取最大值作为1范数。例如如下的矩阵,1范数求法如下:对于实矩阵,矩阵A的2范数定义为:A的转置与A乘积的最大特征值开平方根。对于以上矩阵,直接调用函数可以求得2范数为16.8481,使用定义计算的过程,说明计算是正确的。对于复矩阵,将转置替换为共轭转置...
矩阵的范数怎么计算
常见的有1范数、2范数和无穷范数。1范数是矩阵列向量绝对值之和的最大值,即 ||A||1 = \max_j \sum{i=1}^n |a_{ij}|。2范数是矩阵的特征值的平方和的平方根,即 ||A||2 = \sqrt{\lambda{\max}(A^TA)},其中 lambda_{\max} 表示矩阵的最大特征值。