问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

高中求高中数学全部公式

发布网友 发布时间:2022-04-22 15:21

我来回答

5个回答

热心网友 时间:2023-08-15 20:02

高中数学合集百度网盘下载

链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

热心网友 时间:2023-08-15 20:02

高中数学常用公式及结论

1 元素与集合的关系: , .
2 集合 的子集个数共有 个;真子集有 个;非空子集有 个;非空的真子集有 个.
3 二次函数的解析式的三种形式:
(1) 一般式 ;
(2) 顶点式 ;(当已知抛物线的顶点坐标 时,设为此式)
(3) 零点式 ;(当已知抛物线与 轴的交点坐标为 时,设为此式)
(4)切线式: 。(当已知抛物线与直线 相切且切点的横坐标为 时,设为此式)
4 真值表: 同真且真,同假或假
5 常见结论的否定形式;
原结论 反设词 原结论 反设词
是 不是 至少有一个 一个也没有
都是 不都是 至多有一个 至少有两个
大于 不大于 至少有 个
至多有( )个

小于 不小于 至多有 个
至少有( )个

对所有 ,成立
存在某 ,不成立



对任何 ,不成立
存在某 ,成立



6 四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)

原命题 互逆 逆命题
若p则q 若q则p
互 互
互 为 为 互
否 否
逆 逆
否 否
否命题 逆否命题
若非p则非q 互逆 若非q则非p

充要条件: (1)、 ,则P是q的充分条件,反之,q是p的必要条件;
(2)、 ,且q ≠> p,则P是q的充分不必要条件;
(3)、p ≠> p ,且 ,则P是q的必要不充分条件;
4、p ≠> p ,且q ≠> p,则P是q的既不充分又不必要条件。
7 函数单调性:
增函数:(1)、文字描述是:y随x的增大而增大。
(2)、数学符号表述是:设f(x)在x D上有定义,若对任意的 ,都有
成立,则就叫f(x)在x D上是增函数。D则就是f(x)的递增区间。
减函数:(1)、文字描述是:y随x的增大而减小。
(2)、数学符号表述是:设f(x)在x D上有定义,若对任意的 ,都有
成立,则就叫f(x)在x D上是减函数。D则就是f(x)的递减区间。
单调性性质:(1)、增函数+增函数=增函数;(2)、减函数+减函数=减函数;
(3)、增函数-减函数=增函数;(4)、减函数-增函数=减函数;
注:上述结果中的函数的定义域一般情况下是要变的,是等号左边两个函数定义域的交集。
复合函数的单调性:
函数 单调 单调性
内层函数 ↓ ↑ ↑ ↓
外层函数 ↓ ↑ ↓ ↑
复合函数 ↑ ↑ ↓ ↓
等价关系:
(1)设 那么
上是增函数;
上是减函数.
(2)设函数 在某个区间内可导,如果 ,则 为增函数;如果 ,则 为减函数.
8函数的奇偶性:(注:是奇偶函数的前提条件是:定义域必须关于原点对称)
奇函数:
定义:在前提条件下,若有 ,
则f(x)就是奇函数。
性质:(1)、奇函数的图象关于原点对称;
(2)、奇函数在x>0和x<0上具有相同的单调区间;
(3)、定义在R上的奇函数,有f(0)=0 .
偶函数:
定义:在前提条件下,若有 ,则f(x)就是偶函数。
性质:(1)、偶函数的图象关于y轴对称;
(2)、偶函数在x>0和x<0上具有相反的单调区间;
奇偶函数间的关系:
(1)、奇函数•偶函数=奇函数; (2)、奇函数•奇函数=偶函数;
(3)、偶奇函数•偶函数=偶函数; (4)、奇函数±奇函数=奇函数(也有例外得偶函数的)
(5)、偶函数±偶函数=偶函数; (6)、奇函数±偶函数=非奇非偶函数
奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.
9函数的周期性:
定义:对函数f(x),若存在T 0,使得f(x+T)=f(x),则就叫f(x)是周期函数,其中,T是f(x)的一个周期。
周期函数几种常见的表述形式:
(1)、f(x+T)= - f(x),此时周期为2T ;
(2)、 f(x+m)=f(x+n),此时周期为2 ;
(3)、 ,此时周期为2m 。
10常见函数的图像:

11 对于函数 ( ), 恒成立,则函数 的对称轴是 ;两个函数 与 的图象关于直线 对称.
12 分数指数幂与根式的性质:
(1) ( ,且 ).
(2) ( ,且 ).
(3) .
(4)当 为奇数时, ;当 为偶数时, .
13 指数式与对数式的互化式: .
指数性质:
(1)1、 ; (2)、 ( ) ; (3)、
(4)、 ; (5)、 ;
指数函数:
(1)、 在定义域内是单调递增函数;
(2)、 在定义域内是单调递减函数。注: 指数函数图象都恒过点(0,1)
对数性质:
(1)、 ;(2)、 ;
(3)、 ;(4)、 ; (5)、
(6)、 ; (7)、
对数函数:
(1)、 在定义域内是单调递增函数;
(2)、 在定义域内是单调递减函数;注: 对数函数图象都恒过点(1,0)
(3)、
(4)、 或
14 对数的换底公式 : ( ,且 , ,且 , ).
对数恒等式: ( ,且 , ).
推论 ( ,且 , ).
15对数的四则运算法则:若a>0,a≠1,M>0,N>0,则
(1) ; (2) ;
(3) ; (4) 。
16 平均增长率的问题(负增长时 ):
如果原来产值的基础数为N,平均增长率为 ,则对于时间 的总产值 ,有 .
17 等差数列:
通项公式: (1) ,其中 为首项,d为公差,n为项数, 为末项。
(2)推广:
(3) (注:该公式对任意数列都适用)
前n项和: (1) ;其中 为首项,n为项数, 为末项。
(2)
(3) (注:该公式对任意数列都适用)
(4) (注:该公式对任意数列都适用)
常用性质:(1)、若m+n=p+q ,则有 ;
注:若 的等差中项,则有2 n、m、p成等差。
(2)、若 、 为等差数列,则 为等差数列。
(3)、 为等差数列, 为其前n项和,则 也成等差数列。
(4)、 ;
(5) 1+2+3+…+n=
等比数列:
通项公式:(1) ,其中 为首项,n为项数,q为公比。
(2)推广:
(3) (注:该公式对任意数列都适用)
前n项和:(1) (注:该公式对任意数列都适用)
(2) (注:该公式对任意数列都适用)
(3)
常用性质:(1)、若m+n=p+q ,则有 ;
注:若 的等比中项,则有 n、m、p成等比。
(2)、若 、 为等比数列,则 为等比数列。
18分期付款(按揭贷款) :每次还款 元(贷款 元, 次还清,每期利率为 ).
19三角不等式:
(1)若 ,则 .
(2) 若 ,则 .
(3) .
20 同角三角函数的基本关系式 : , = ,
21 正弦、余弦的诱导公式(奇变偶不变,符号看象限)
22 和角与差角公式
; ;
.
=
(辅助角 所在象限由点 的象限决定, ).
23 二倍角公式及降幂公式
.
.
.

24 三角函数的周期公式
函数 ,x∈R及函数 ,x∈R(A,ω, 为常数,且A≠0)的周期 ;函数 , (A,ω, 为常数,且A≠0)的周期 .
三角函数的图像:

25 正弦定理 : (R为 外接圆的半径).

26余弦定理:
; ; .
27面积定理:
(1) ( 分别表示a、b、c边上的高).
(2) .
(3) .

28三角形内角和定理 :
在△ABC中,有
.
29实数与向量的积的运算律:设λ、μ为实数,那么:
(1) 结合律:λ(μ )=(λμ) ;
(2)第一分配律:(λ+μ) =λ +μ ;
(3)第二分配律:λ( + )=λ +λ .
30 与 的数量积(或内积): • =| || | 。
31平面向量的坐标运算:
(1)设 = , = ,则 + = .
(2)设 = , = ,则 - = .
(3)设A ,B ,则 .
(4)设 = ,则 = .
(5)设 = , = ,则 • = .
32 两向量的夹角公式:
( = , = ).
33 平面两点间的距离公式:
= (A ,B ).
34 向量的平行与垂直 :设 = , = ,且 ,则:
|| =λ .(交叉相乘差为零)
( ) • =0 .(对应相乘和为零)
35 线段的定比分公式 :设 , , 是线段 的分点, 是实数,且 ,则
( ).
36三角形的重心坐标公式: △ABC三个顶点的坐标分别为 、 、 ,则△ABC的重心的坐标是 .
37三角形五“心”向量形式的充要条件:
设 为 所在平面上一点,角 所对边长分别为 ,则
(1) 为 的外心 .
(2) 为 的重心 .
(3) 为 的垂心 .
(4) 为 的内心 .
(5) 为 的 的旁心 .
38常用不等式:
(1) (当且仅当a=b时取“=”号).
(2) (当且仅当a=b时取“=”号).
(3)
(4) .
(5) (当且仅当a=b时取“=”号)。
39极值定理:已知 都是正数,则有
(1)若积 是定值 ,则当 时和 有最小值 ;
(2)若和 是定值 ,则当 时积 有最大值 .
(3)已知 ,若 则有

(4)已知 ,若 则有

40 一元二次不等式 ,如果 与 同号,则其解集在两根之外;如果 与 异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.即:

.
41 含有绝对值的不等式 :当a> 0时,有
.
或 .
42 斜率公式 :
( 、 ).
43 直线的五种方程:
(1)点斜式 (直线 过点 ,且斜率为 ).
(2)斜截式 (b为直线 在y轴上的截距).
(3)两点式 ( )( 、 ( )).
两点式的推广: (无任何*条件!)
(4)截距式 ( 分别为直线的横、纵截距, )
(5)一般式 (其中A、B不同时为0).
直线 的法向量: ,方向向量:
44 夹角公式:
(1) . ( , , )
(2) .( , , ).
直线 时,直线l1与l2的夹角是 .
45 到 的角公式:
(1) .( , , )
(2) .( , , ).
直线 时,直线l1到l2的角是 .
46 点到直线的距离 : (点 ,直线 : ).
47 圆的四种方程:
(1)圆的标准方程 .
(2)圆的一般方程 ( >0).
(3)圆的参数方程 .
(4)圆的直径式方程 (圆的直径的端点是 、 ).
48点与圆的位置关系:点 与圆 的位置关系有三种:
若 ,则 点 在圆外;
点 在圆上; 点 在圆内.
49直线与圆的位置关系:直线 与圆 的位置关系有三种( ):
; ; .
50 两圆位置关系的判定方法:设两圆圆心分别为O1,O2,半径分别为r1,r2, ,则:
;
;
;
;
.
51 椭圆 的参数方程是 . 离心率 ,
准线到中心的距离为 ,焦点到对应准线的距离(焦准距) 。
过焦点且垂直于长轴的弦叫通经,其长度为: .
52 椭圆 焦半径公式及两焦半径与焦距构成三角形的面积:
, ; 。
53椭圆的的内外部:
(1)点 在椭圆 的内部 .
(2)点 在椭圆 的外部 .
54 椭圆的切线方程:
(1) 椭圆 上一点 处的切线方程是 .
(2)过椭圆 外一点 所引两条切线的切点弦方程是 .
(3)椭圆 与直线 相切的条件是 .
55 双曲线 的离心率 ,准线到中心的距离为 ,焦点到对应准线的距离(焦准距) 。过焦点且垂直于实轴的弦叫通经,其长度为: .
焦半径公式 , ,
两焦半径与焦距构成三角形的面积 。

56 双曲线的方程与渐近线方程的关系:
(1)若双曲线方程为 渐近线方程: .
(2)若渐近线方程为 双曲线可设为 .
(3)若双曲线与 有公共渐近线,可设为
( ,焦点在x轴上, ,焦点在y轴上).
(4) 焦点到渐近线的距离总是 。
57双曲线的切线方程:
(1)双曲线 上一点 处的切线方程是 .
(2)过双曲线 外一点 所引两条切线的切点弦方程是 .
(3)双曲线 与直线 相切的条件是 .
58抛物线 的焦半径公式:
抛物线 焦半径 .
过焦点弦长 .
59二次函数 的图象是抛物线:
(1)顶点坐标为 ;(2)焦点的坐标为 ;
(3)准线方程是 .
60 直线与圆锥曲线相交的弦长公式

(弦端点A ,由方程 消去y得到
, 为直线 的倾斜角, 为直线的斜率, .
61证明直线与平面的平行的思考途径:
(1)转化为直线与平面无公共点;
(2)转化为线线平行;
(3)转化为面面平行.
62证明直线与平面垂直的思考途径:
(1)转化为该直线与平面内任一直线垂直;
(2)转化为该直线与平面内相交二直线垂直;
(3)转化为该直线与平面的一条垂线平行;
(4)转化为该直线垂直于另一个平行平面。
63证明平面与平面的垂直的思考途径:
(1)转化为判断二面角是直二面角;
(2)转化为线面垂直;
(3) 转化为两平面的法向量平行。
64 向量的直角坐标运算:
设 = , = 则:
(1) + = ;
(2) - = ;
(3)λ = (λ∈R);
(4) • = ;
65 夹角公式:
设 = , = ,则 .
66 异面直线间的距离 :
( 是两异面直线,其公垂向量为 , 是 上任一点, 为 间的距离).
67点 到平面 的距离:
( 为平面 的法向量, , 是 的一条斜线段).
68球的半径是R,则其体积 ,其表面积 .
69球的组合体:
(1)球与长方体的组合体: 长方体的外接球的直径是长方体的体对角线长.
(2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长.
(3)球与正四面体的组合体: 棱长为 的正四面体的内切球的半径为
(正四面体高 的 ),外接球的半径为 (正四面体高 的 ).
70 分类计数原理(加法原理): .
分步计数原理(乘法原理): .
71排列数公式 : = = .( , ∈N*,且 ).规定 .
72 组合数公式: = = = ( ∈N*, ,且 ).
组合数的两个性质:(1) = ;(2) + = .规定 .
73 二项式定理 ;
二项展开式的通项公式 .
的展开式的系数关系:
; ; 。
74 互斥事件A,B分别发生的概率的和:P(A+B)=P(A)+P(B).
个互斥事件分别发生的概率的和:P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).
75 独立事件A,B同时发生的概率:P(A•B)= P(A)•P(B).
n个独立事件同时发生的概率:P(A1• A2•…• An)=P(A1)• P(A2)•…• P(An).
76 n次独立重复试验中某事件恰好发生k次的概率:
77 数学期望:
数学期望的性质
(1) . (2)若 ~ ,则 .
(3) 若 服从几何分布,且 ,则 .
78方差:
标准差: = .
方差的性质:
(1) ;
(2)若 ~ ,则 .
(3) 若 服从几何分布,且 ,则 .
方差与期望的关系: .
79正态分布密度函数: ,
式中的实数μ, ( >0)是参数,分别表示个体的平均数与标准差.
对于 ,取值小于x的概率: .

80 在 处的导数(或变化率):
.
瞬时速度: .
瞬时加速度: .
81 函数 在点 处的导数的几何意义:
函数 在点 处的导数是曲线 在 处的切线的斜率 ,相应的切线方程是 .
82 几种常见函数的导数:
(1) (C为常数).(2) .(3) .
(4) . (5) ; .
(6) ; .
83 导数的运算法则:
(1) .(2) .(3) .
84 判别 是极大(小)值的方法:
当函数 在点 处连续时,
(1)如果在 附近的左侧 ,右侧 ,则 是极大值;
(2)如果在 附近的左侧 ,右侧 ,则 是极小值.
85 复数的相等: .( )
86 复数 的模(或绝对值) = = .
87 复平面上的两点间的距离公式:
( , ).
88实系数一元二次方程的解
实系数一元二次方程 ,
①若 ,则 ;
②若 ,则 ;
③若 ,它在实数集 内没有实数根;在复数集 内有且仅有两个共轭复数根 .

高中数学公式提升
一、集合、简易逻辑、函数
1. 研究集合必须注意集合元素的特征即三性(确定,互异,无序); 已知集合A={x,xy,lgxy},集合B={0,|x|,y},且A=B,则x+y=
2. 研究集合,首先必须弄清代表元素,才能理解集合的意义。已知集合M={y|y=x2 ,x∈R},N={y|y=x2+1,x∈R},求M∩N;与集合M={(x,y)|y=x2 ,x∈R},N={(x,y)|y=x2+1,x∈R}求M∩N的区别。
3. 集合 A、B, 时,你是否注意到“极端”情况: 或 ;求集合的子集 时是否忘记 . 例如: 对一切 恒成立,求a的取植范围,你讨论了a=2的情况了吗?
4. 对于含有n个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为 如满足条件 的集合M共有多少个
5. 解集合问题的基本工具是韦恩图; 某文艺小组共有10名成员,每人至少会唱歌和跳舞中的一项,其中7人会唱歌跳舞5人会,现从中选出会唱歌和会跳舞的各一人,表演一个唱歌和一个跳舞节目,问有多少种不同的选法?
6. 两集合之间的关系。
7. (CUA)∩( CU B) = CU(A∪B) (CUA)∪( CUB) = CU(A∩B); ;
8、可以判断真假的语句叫做命题.
逻辑连接词有“或”、“且”和“非”.
p、q形式的复合命题的真值表: (真且真,同假或假)

p q P且q P或q
真 真 真 真
真 假 假 真
假 真 假 真
假 假 假 假
9、 命题的四种形式及其相互关系:
互 逆

互 互
互 为 互
否 逆 逆 否
否 否
否 否
否 互 逆

原命题与逆否命题同真同假;逆命题与否命题同真同假.
10、你对映射的概念了解了吗?映射f:A→B中,A中元素的任意性和B中与它对应元素的唯一性,哪几种对应能够成映射?
11、函数的几个重要性质:
①如果函数 对于一切 ,都有 或f(2a-x)=f(x),那么函数 的图象关于直线 对称.
②函数 与函数 的图象关于直线 对称;
函数 与函数 的图象关于直线 对称;
函数 与函数 的图象关于坐标原点对称.
③若奇函数 在区间 上是递增函数,则 在区间 上也是递增函数.
④若偶函数 在区间 上是递增函数,则 在区间 上是递减函数.
⑤函数 的图象是把函数 的图象沿x轴向左平移a个单位得到的;函数 ( 的图象是把函数 的图象沿x轴向右平移 个单位得到的;
函数 +a 的图象是把函数 助图象沿y轴向上平移a个单位得到的;函数 +a 的图象是把函数 助图象沿y轴向下平移 个单位得到的.
12、求一个函数的解析式和一个函数的反函数时,你标注了该函数的定义域了吗?
13、求函数的定义域的常见类型记住了吗?函数y= 的定义域是 ;
复合函数的定义域弄清了吗?函数 的定义域是[0,1],求 的定义域. 函数 的定义域是[ ], 求函数 的定义域
14、一个函数的奇偶性时,你注意到函数的定义域是否关于原点对称这个必要非充分条件了吗? 在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个奇函数与一个偶函数的乘积是奇函数;
15、据定义证明函数的单调性时,规范格式是什么?(取值, 作差, 判正负.)可别忘了导数也是判定函数单调性的一种重要方法。
16、函数 的单调区间吗?(该函数在 和 上单调递增;在
和 上单调递减)这可是一个应用广泛的函数!
17、函数问题时,你注意到真数与底数的*条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论呀.
18、换底公式及它的变形,你掌握了吗?( )
19、 你还记得对数恒等式吗?( )
20、 “实系数一元二次方程 有实数解”转化为“ ”,你是否注意到必须 ;当a=0时,“方程有解”不能转化为 .若原题中没有指出是“二次”方程、函数或不等式,你是否考虑到二次项系数可能为零的情形?
二、三角、不等式
21、 三角公式记住了吗?两角和与差的公式________________; 二倍角公式:________________;解题时本着“三看”的基本原则来进行:“看角,看函数,看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次,
22、 在解三角问题时,你注意到正切函数、余切函数的定义域了吗?正切函数在整个定义域内是否为单调函数?你注意到正弦函数、余弦函数的有界性了吗?
23、 在三角中,你知道1等于什么吗?(
这些统称为1的代换) 常数 “1”的种种代换有着广泛的应用.(还有同角关系公式:商的关系,倒数关系,平方关系;
诱导公试:奇变偶不变,符号看象限)
24、 在三角的恒等变形中,要特别注意角的各种变换.(如 等)
25、 你还记得三角化简题的要求是什么吗?项数最少、函数种类最少、分母不含三角函数、且能求出值的式子,一定要算出值来)
26、 你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角. 异角化同角,异名化同名,高次化低次);你还记得降幂公式吗?cos2x=(1+cos2x)/2;sin2x=(1-cos2x)/2
27、 你还记得某些特殊角的三角函数值吗?
( )
28、 你还记得在弧度制下弧长公式和扇形面积公式吗?( )
29、 辅助角公式: (其中 角所在的象限由a, b 的符号确定, 角的值由 确定)在求最值、化简时起着重要作用.
30、 三角函数(正弦、余弦、正切)图象的草图能迅速画出吗?能写出他们的单调区、对称轴,取最值时的x值的集合吗?(别忘了k Z)
三角函数性质要记牢。函数y= k的图象及性质:
振幅|A|,周期T= , 若x=x0为此函数的对称轴,则x0是使y取到最值的点,反之亦然,使y取到最值的x的集合为 , 当 时函数的增区间为 ,减区间为 ;当 时要利用诱导公式将 变为大于零后再用上面的结论。
五点作图法:令 依次为 求出x与y,依点 作图
31、 三角函数图像变换还记得吗?
平移公(1)如果点 P(x,y)按向量 平移至P′(x′,y′),则
(2) 曲线f(x,y)=0沿向量 平移后的方程为f(x-h,y-k)=0
32、 有关斜三角形的几个结论:(1) 正弦定理: (2) 余弦定理: (3)面积公式
33、 在用三角函数表示直线的倾斜角、两条异面直线所成的角等时,你是否注意到它们各自的取值范围及意义?
①异面直线所成的角、直线与平面所成的角、向量的夹角的取值范围依次是 .
②直线的倾斜角、 到 的角、 与 的夹角的取值范围依次是 .
34、 不等式的解集的规范书写格式是什么?(一般要写成集合的表达式)
35、 分式不等式 的一般解题思路是什么?(移项通分,分子分母分解因式,x的系数变为正值,奇穿偶回)
36、 含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论)
37、 利用重要不等式 以及变式 等求函数的最值时,你是否注意到a,b (或a ,b非负),且“等号成立”时的条件,积ab或和a+b其中之一应是定值?(一正二定三相等)
38、 (当且仅当 时,取等号); a、b、c R, (当且仅当 时,取等号);
39、 在解含有参数的不等式时,怎样进行讨论?(特别是指数和对数的底 或 )讨论完之后,要写出:综上所述,原不等式的解集是…….
40、 解含参数的不等式的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”
41、 对于不等式恒成立问题,常用的处理方式?(转化为最值问题)
三、数列
42、 等差数列中的重要性质:(1)若 ,则 ;(2) ;
(3)若三数成等差数列,则可设为a-d、a、a+d;若为四数则可设为a- 、a- 、a+ 、a+ ;
(4)在等差数列中,求Sn 的最大(小)值,其思路是找出某一项,使这项及它前面的项皆取正(负)值或0,而它后面各项皆取负(正)值,则从第一项起到该项的各项的和为最大(小).即:当a1 >0,d<0,解不等式组 an ≥0 an+1 ≤0 可得Sn 达最大值时的n的值;当a1 <0,d>0,解不等式组 an ≤0 an+1 ≥0 可得Sn 达最小值时的n的值;(5).若an ,bn 是等差数列,Sn ,Tn 分别为an ,bn 的前n项和,则 。.(6).若{ }是等差数列,则{ }是等比数列,若{ }是等比数列且 ,则{ }是等差数列.
43、 等比数列中的重要性质:(1)若 ,则 ;(2) , , 成等比数列
44、 你是否注意到在应用等比数列求前n项和时,需要分类讨论.( 时, ; 时, )
45、 等比数列的一个求和公式:设等比数列 的前n项和为 ,公比为 , 则

46、 等差数列的一个性质:设 是数列 的前n项和, 为等差数列的充要条件是
(a, b为常数)其公差是2a.
47、 你知道怎样的数列求和时要用“错位相减”法吗?(若 ,其中 是等差数列, 是等比数列,求 的前n项的和)
48、 用 求数列的通项公式时,你注意到 了吗?
49、 你还记得裂项求和吗?(如 .)
四、排列组合、二项式定理
50、 解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合.
51、 解排列组合问题的规律是:相邻问题*法;不邻问题插空法;多排问题单排法;定位问题优先法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法,还记得什么时候用隔板法?
52、 排列数公式是: 组合数公式是: 排列数与组合数的关系是:
组合数性质: = + = =

我这里有很多高中时的复习资料和解题方法,可以的话给我发邮件,我将很全的发给你,高考不会少于140,但还要看你的努力程度了

热心网友 时间:2023-08-15 20:02

高中的数学公式定理大集中
三角函数公式表

同角三角函数的基本关系式
倒数关系: 商的关系: 平方关系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1 sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα sin2α+cos2α=1
1+tan2α=sec2α
1+cot2α=csc2α
(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”)

诱导公式(口诀:奇变偶不变,符号看象限。)
sin(-α)=-sinα
cos(-α)=cosα tan(-α)=-tanα
cot(-α)=-cotα

sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα

sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα

sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα

sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα

sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα

sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα

sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα

sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
(其中k∈Z)

两角和与差的三角函数公式 万能公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ

tanα+tanβ
tan(α+β)=——————
1-tanα ·tanβ

tanα-tanβ
tan(α-β)=——————
1+tanα ·tanβ
2tan(α/2)
sinα=——————
1+tan2(α/2)

1-tan2(α/2)
cosα=——————
1+tan2(α/2)

2tan(α/2)
tanα=——————
1-tan2(α/2)

半角的正弦、余弦和正切公式 三角函数的降幂公式

二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式
sin2α=2sinαcosα

cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α

2tanα
tan2α=—————
1-tan2α

sin3α=3sinα-4sin3α

cos3α=4cos3α-3cosα

3tanα-tan3α
tan3α=——————
1-3tan2α

三角函数的和差化积公式 三角函数的积化和差公式
α+β α-β
sinα+sinβ=2sin———·cos———
2 2
α+β α-β
sinα-sinβ=2cos———·sin———
2 2
α+β α-β
cosα+cosβ=2cos———·cos———
2 2
α+β α-β
cosα-cosβ=-2sin———·sin———
2 2 1
sinα ·cosβ=-[sin(α+β)+sin(α-β)]
2
1
cosα ·sinβ=-[sin(α+β)-sin(α-β)]
2
1
cosα ·cosβ=-[cos(α+β)+cos(α-β)]
2
1
sinα ·sinβ=— -[cos(α+β)-cos(α-β)]
2

化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式

集合、函数

集合 简单逻辑
任一x∈A x∈B,记作A B
A B,B A A=B
A B={x|x∈A,且x∈B}
A B={x|x∈A,或x∈B}

card(A B)=card(A)+card(B)-card(A B)
(1)命题
原命题 若p则q
逆命题 若q则p
否命题 若 p则 q
逆否命题 若 q,则 p
(2)四种命题的关系
(3)A B,A是B成立的充分条件
B A,A是B成立的必要条件
A B,A是B成立的充要条件

函数的性质 指数和对数
(1)定义域、值域、对应法则
(2)单调性
对于任意x1,x2∈D
若x1<x2 f(x1)<f(x2),称f(x)在D上是增函数
若x1<x2 f(x1)>f(x2),称f(x)在D上是减函数
(3)奇偶性
对于函数f(x)的定义域内的任一x,若f(-x)=f(x),称f(x)是偶函数
若f(-x)=-f(x),称f(x)是奇函数
(4)周期性
对于函数f(x)的定义域内的任一x,若存在常数T,使得f(x+T)=f(x),则称f(x)是周期函数 (1)分数指数幂
正分数指数幂的意义是

负分数指数幂的意义是

(2)对数的性质和运算法则

loga(MN)=logaM+logaN

logaMn=nlogaM(n∈R)

指数函数 对数函数
(1)y=ax(a>0,a≠1)叫指数函数
(2)x∈R,y>0
图象经过(0,1)
a>1时,x>0,y>1;x<0,0<y<1
0<a<1时,x>0,0<y<1;x<0,y>1
a> 1时,y=ax是增函数
0<a<1时,y=ax是减函数 (1)y=logax(a>0,a≠1)叫对数函数
(2)x>0,y∈R
图象经过(1,0)
a>1时,x>1,y>0;0<x<1,y<0
0<a<1时,x>1,y<0;0<x<1,y>0
a>1时,y=logax是增函数
0<a<1时,y=logax是减函数
指数方程和对数方程
基本型
logaf(x)=b f(x)=ab(a>0,a≠1)
同底型
logaf(x)=logag(x) f(x)=g(x)>0(a>0,a≠1)
换元型 f(ax)=0或f (logax)=0

数列

数列的基本概念 等差数列
(1)数列的通项公式an=f(n)
(2)数列的递推公式
(3)数列的通项公式与前n项和的关系

an+1-an=d
an=a1+(n-1)d
a,A,b成等差 2A=a+b
m+n=k+l am+an=ak+al

等比数列 常用求和公式
an=a1qn_1
a,G,b成等比 G2=ab
m+n=k+l aman=akal

不等式

不等式的基本性质 重要不等式
a>b b<a
a>b,b>c a>c
a>b a+c>b+c
a+b>c a>c-b
a>b,c>d a+c>b+d
a>b,c>0 ac>bc
a>b,c<0 ac<bc
a>b>0,c>d>0 ac<bd
a>b>0 dn>bn(n∈Z,n>1)
a>b>0 > (n∈Z,n>1)
(a-b)2≥0
a,b∈R a2+b2≥2ab

|a|-|b|≤|a±b|≤|a|+|b|
证明不等式的基本方法
比较法
(1)要证明不等式a>b(或a<b),只需证明
a-b>0(或a-b<0=即可
(2)若b>0,要证a>b,只需证明 ,
要证a<b,只需证明
综合法 综合法就是从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式(由因导果)的方法。
分析法 分析法是从寻求结论成立的充分条件入手,逐步寻求所需条件成立的充分条件,直至所需的条件已知正确时为止,明显地表现出“持果索因”

复数

代数形式 三角形式
a+bi=c+di a=c,b=d

(a+bi)+(c+di)=(a+c)+(b+d)i
(a+bi)-(c+di)=(a-c)+(b-d)i
(a+bi)(c+di )=(ac-bd)+(bc+ad)i

a+bi=r(cosθ+isinθ)
r1=(cosθ1+isinθ1)•r2(cosθ2+isinθ2)
=r1•r2〔cos(θ1+θ2)+isin(θ1+θ2)〕
〔r(cosθ+sinθ)〕n=rn(cosnθ+isinnθ)

k=0,1,……,n-1

解析几何

1、直线
两点距离、定比分点 直线方程
|AB|=| |
|P1P2|=

y-y1=k(x-x1)
y=kx+b

两直线的位置关系 夹角和距离

或k1=k2,且b1≠b2
l1与l2重合
或k1=k2且b1=b2
l1与l2相交
或k1≠k2
l2⊥l2
或k1k2=-1 l1到l2的角

l1与l2的夹角

点到直线的距离

2.圆锥曲线
圆 椭 圆
标准方程(x-a)2+(y-b)2=r2
圆心为(a,b),半径为R
一般方程x2+y2+Dx+Ey+F=0
其中圆心为( ),
半径r
(1)用圆心到直线的距离d和圆的半径r判断或用判别式判断直线与圆的位置关系
(2)两圆的位置关系用圆心距d与半径和与差判断 椭圆
焦点F1(-c,0),F2(c,0)
(b2=a2-c2)
离心率
准线方程
焦半径|MF1|=a+ex0,|MF2|=a-ex0
双曲线 抛物线
双曲线
焦点F1(-c,0),F2(c,0)
(a,b>0,b2=c2-a2)
离心率
准线方程
焦半径|MF1|=ex0+a,|MF2|=ex0-a 抛物线y2=2px(p>0)
焦点F
准线方程

坐标轴的平移

这里(h,k)是新坐标系的原点在原坐标系中的坐标。

1.集合元素具有①确定性②互异性③无序性
2.集合表示方法①列举法 ②描述法
③韦恩图 ④数轴法
3.集合的运算
⑴ A∩(B∪C)=(A∩B)∪(A∩C)
⑵ Cu(A∩B)=CuA∪CuB
Cu(A∪B)=CuA∩CuB
4.集合的性质
⑴n元集合的子集数:2n
真子集数:2n-1;非空真子集数:2n-2
高中数学概念总结
一、 函数
1、 若集合A中有n 个元素,则集合A的所有不同的子集个数为 ,所有非空真子集的个数是 。
二次函数 的图象的对称轴方程是 ,顶点坐标是 。用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即 , 和 (顶点式)。
2、 幂函数 ,当n为正奇数,m为正偶数,m<n时,其大致图象是

3、 函数 的大致图象是

由图象知,函数的值域是 ,单调递增区间是 ,单调递减区间是 。
二、 三角函数
1、 以角 的顶点为坐标原点,始边为x轴正半轴建立直角坐标系,在角 的终边上任取一个异于原点的点 ,点P到原点的距离记为 ,则sin = ,cos = ,tg = ,ctg = ,sec = ,csc = 。
2、同角三角函数的关系中,平方关系是: , , ;
倒数关系是: , , ;
相除关系是: , 。
3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。如: , = , 。
4、 函数 的最大值是 ,最小值是 ,周期是 ,频率是 ,相位是 ,初相是 ;其图象的对称轴是直线 ,凡是该图象与直线 的交点都是该图象的对称中心。
5、 三角函数的单调区间:
的递增区间是 ,递减区间是 ; 的递增区间是 ,递减区间是 , 的递增区间是 , 的递减区间是 。
6、

7、二倍角公式是:sin2 =
cos2 = = =
tg2 = 。
8、三倍角公式是:sin3 = cos3 =
9、半角公式是:sin = cos =
tg = = = 。
10、升幂公式是: 。
11、降幂公式是: 。
12、万能公式:sin = cos = tg =
13、sin( )sin( )= ,
cos( )cos( )= = 。
14、 = ;
= ;
= 。
15、 = 。
16、sin180= 。
17、特殊角的三角函数值:

0
sin 0 1 0
cos 1 0 0
tg 0 1 不存在 0 不存在
ctg 不存在 1 0 不存在 0

18、正弦定理是(其中R表示三角形的外接圆半径):
19、由余弦定理第一形式, =
由余弦定理第二形式,cosB=
20、△ABC的面积用S表示,外接圆半径用R表示,内切圆半径用r表示,半周长用p表示则:
① ;② ;
③ ;④ ;
⑤ ;⑥
21、三角学中的射影定理:在△ABC 中, ,…
22、在△ABC 中, ,…
23、在△ABC 中:

24、积化和差公式:
① ,
② ,
③ ,
④ 。
25、和差化积公式:
① ,
② ,
③ ,
④ 。
三、 反三角函数
1、 的定义域是[-1,1],值域是 ,奇函数,增函数;
的定义域是[-1,1],值域是 ,非奇非偶,减函数;
的定义域是R,值域是 ,奇函数,增函数;
的定义域是R,值域是 ,非奇非偶,减函数。
2、当 ;

对任意的 ,有:

当 。
3、最简三角方程的解集:

四、 不等式
1、若n为正奇数,由 可推出 吗? ( 能 )
若n为正偶数呢? ( 均为非负数时才能)
2、同向不等式能相减,相除吗 (不能)
能相加吗? ( 能 )
能相乘吗? (能,但有条件)
3、两个正数的均值不等式是:
三个正数的均值不等式是:
n个正数的均值不等式是:
4、两个正数 的调和平均数、几何平均数、算术平均数、均方根之间的关系是

6、 双向不等式是:
左边在 时取得等号,右边在 时取得等号。
五、 数列
1、等差数列的通项公式是 ,前n项和公式是: = 。
2、等比数列的通项公式是 ,
前n项和公式是:
3、当等比数列 的公比q满足 <1时, =S= 。一般地,如果无穷数列 的前n项和的极限 存在,就把这个极限称为这个数列的各项和(或所有项的和),用S表示,即S= 。
4、若m、n、p、q∈N,且 ,那么:当数列 是等差数列时,有 ;当数列 是等比数列时,有 。
5、 等差数列 中,若Sn=10,S2n=30,则S3n=60;
6、等比数列 中,若Sn=10,S2n=30,则S3n=70;
六、 复数
1、 怎样计算?(先求n被4除所得的余数, )
2、 是1的两个虚立方根,并且:

3、 复数集内的三角形不等式是: ,其中左边在复数z1、z2对应的向量共线且反向(同向)时取等号,右边在复数z1、z2对应的向量共线且同向(反向)时取等号。
4、 棣莫佛定理是:
5、 若非零复数 ,则z的n次方根有n个,即:

它们在复平面内对应的点在分布上有什么特殊关系?
都位于圆心在原点,半径为 的圆上,并且把这个圆n等分。
6、 若 ,复数z1、z2对应的点分别是A、B,则△AOB(O为坐标原点)的面积是 。
7、 = 。
8、 复平面内复数z对应的点的几个基本轨迹:
① 轨迹为一条射线。
② 轨迹为一条射线。
③ 轨迹是一个圆。
④ 轨迹是一条直线。
⑤ 轨迹有三种可能情形:a)当 时,轨迹为椭圆;b)当 时,轨迹为一条线段;c)当 时,轨迹不存在。
⑥ 轨迹有三种可能情形:a)当 时,轨迹为双曲线;b) 当 时,轨迹为两条射线;c) 当 时,轨迹不存在。
七、 排列组合、二项式定理
1、 加法原理、乘法原理各适用于什么情形?有什么特点?
加法分类,类类独立;乘法分步,步步相关。
2、排列数公式是: = = ;
排列数与组合数的关系是:
组合数公式是: = = ;
组合数性质: = + =
= =

3、 二项式定理: 二项展开式的通项公式:
八、 解析几何
1、 沙尔公式:
2、 数轴上两点间距离公式:
3、 直角坐标平面内的两点间距离公式:
4、 若点P分有向线段 成定比λ,则λ=
5、 若点 ,点P分有向线段 成定比λ,则:λ= = ;
=
=
若 ,则△ABC的重心G的坐标是 。
6、求直线斜率的定义式为k= ,两点式为k= 。
7、直线方程的几种形式:
点斜式: , 斜截式:
两点式: , 截距式:
一般式:
经过两条直线 的交点的直线系方程是:
8、 直线 ,则从直线 到直线 的角θ满足:
直线 与 的夹角θ满足:
直线 ,则从直线 到直线 的角θ满足:
直线 与 的夹角θ满足:
9、 点 到直线 的距离:

10、两条平行直线 距离是

11、圆的标准方程是:
圆的一般方程是:
其中,半径是 ,圆心坐标是
思考:方程 在 和 时各表示怎样的图形?
12、若 ,则以线段AB为直径的圆的方程是

经过两个圆

的交点的圆系方程是:

经过直线 与圆 的交点的圆系方程是:
13、圆 为切点的切线方程是

一般地,曲线 为切点的切线方程是: 。例如,抛物线 的以点 为切点的切线方程是: ,即: 。
注意:这个结论只能用来做选择题或者填空题,若是做解答题,只能按照求切线方程的常规过程去做。
14、研究圆与直线的位置关系最常用的方法有两种,即:
①判别式法:Δ>0,=0,<0,等价于直线与圆相交、相切、相离;
②考查圆心到直线的距离与半径的大小关系:距离大于半径、等于半径、小于半径,等价于直线与圆相离、相切、相交。
15、抛物线标准方程的四种形式是:

16、抛物线 的焦点坐标是: ,准线方程是: 。
若点 是抛物线 上一点,则该点到抛物线的焦点的距离(称为焦半径)是: ,过该抛物线的焦点且垂直于抛物线对称轴的弦(称为通径)的长是: 。
17、椭圆标准方程的两种形式是: 和

18、椭圆 的焦点坐标是 ,准线方程是 ,离心率是 ,通径的长是 。其中 。
19、若点 是椭圆 上一点, 是其左、右焦点,则点P的焦半径的长是 和 。
20、双曲线标准方程的两种形式是: 和

21、双曲线 的焦点坐标是 ,准线方程是 ,离心率是 ,通径的长是 ,渐近线方程是 。其中 。
22、与双曲线 共渐近线的双曲线系方程是 。与双曲线 共焦点的双曲线系方程是 。
23、若直线 与圆锥曲线交于两点A(x1,y1),B(x2,y2),则弦长为 ;
若直线 与圆锥曲线交于两点A(x1,y1),B(x2,y2),则弦长为 。
24、圆锥曲线的焦参数p的几何意义是焦点到准线的距离,对于椭圆和双曲线都有: 。
25、平移坐标轴,使新坐标系的原点 在原坐标系下的坐标是(h,k),若点P在原坐标系下的坐标是 在新坐标系下的坐标是 ,则 = , = 。
九、 极坐标、参数方程
1、 经过点 的直线参数方程的一般形式是: 。
2、 若直线 经过点 ,则直线参数方程的标准形式是: 。其中点P对应的参数t的几何意义是:有向线段 的数量。
若点P1、P2、P是直线 上的点,它们在上述参数方程中对应的参数分别是 则: ;当点P分有向线段 时, ;当点P是线段P1P2的中点时, 。
3、圆心在点 ,半径为 的圆的参数方程是: 。
3、 若以直角坐标系的原点为极点,x轴正半轴为极轴建立极坐标系,点P的极坐标为 直角坐标为 ,则 , , 。
4、 经过极点,倾斜角为 的直线的极坐标方程是: ,
经过点 ,且垂直于极轴的直线的极坐标方程是: ,
经过点 且平行于极轴的直线的极坐标方程是: ,
经过点 且倾斜角为 的直线的极坐标方程是: 。
5、 圆心在极点,半径为r的圆的极坐标方程是 ;
圆心在点 的圆的极坐标方程是 ;
圆心在点 的圆的极坐标方程是 ;
圆心在点 ,半径为 的圆的极坐标方程是 。
6、 若点M 、N ,则 。
十、 立体几何
1、求二面角的射影公式是 ,其中各个符号的含义是: 是二面角的一个面内图形F的面积, 是图形F在二面角的另一个面内的射影, 是二面角的大小。
2、若直线 在平面 内的射影是直线 ,直线m是平面 内经过 的斜足的一条直线, 与 所成的角为 , 与m所成的角为 , 与m所成的角为θ,则这三个角之间的关系是 。
3、体积公式:
柱体: ,圆柱体: 。
斜棱柱体积: (其中, 是直截面面积, 是侧棱长);
锥体: ,圆锥体: 。
台体: , 圆台体:
球体: 。
4、 侧面积:
直棱柱侧面积: ,斜棱柱侧面积: ;
正棱锥侧面积: ,正棱台侧面积: ;
圆柱侧面积: ,圆锥侧面积: ,
圆台侧面积: ,球的表面积: 。
5、几个基本公式:
弧长公式: ( 是圆心角的弧度数, >0);
扇形面积公式: ;
圆锥侧面展开图(扇形)的圆心角公式: ;
圆台侧面展开图(扇环)的圆心角公式: 。
经过圆锥顶点的最大截面的面积为(圆锥的母线长为 ,轴截面顶角是θ):

十一、比例的几个性质
1、比例基本性质:
2、反比定理:
3、更比定理:
5、 合比定理;
6、 分比定理:
7、 合分比定理:
8、 分合比定理:
9、 等比定理:若 , ,则 。
十二、复合二次根式的化简

当 是一个完全平方数时,对形如 的根式使用上述公式化简比较方便。

⑵并集元素个数:
n(A∪B)=nA+nB-n(A∩B)
5.N 自然数集或非负整数集
Z 整数集 Q有理数集 R实数集
6.简易逻辑中符合命题的真值表
p 非p
真 假
假 真
二.函数
1.二次函数的极点坐标:
函数 的顶点坐标为
2.函数 的单调性:
在 处取极值
3.函数的奇偶性:
在定义域内,若 ,则为偶函数;若 则为奇函数。

1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

热心网友 时间:2023-08-15 20:03

数学公式
抛物线:y = ax *+ bx + c
就是y等于ax 的平方加上 bx再加上 c
a > 0时开口向上
a < 0时开口向下
c = 0时抛物线经过原点
b = 0时抛物线对称轴为y轴
还有顶点式y = a(x+h)* + k
就是y等于a乘以(x+h)的平方+k
-h是顶点坐标的x
k是顶点坐标的y
一般用于求最大值与最小值
抛物线标准方程:y^2=2px
它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2
由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py
圆:体积=4/3(pi)(r^3)
面积=(pi)(r^2)
周长=2(pi)r
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
(一)椭圆周长计算公式
椭圆周长公式:L=2πb+4(a-b)
椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
(二)椭圆面积计算公式
椭圆面积公式: S=πab
椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。
椭圆形物体 体积计算公式椭圆 的 长半径*短半径*PAI*高
三角函数:
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
·万能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理
判别式 b2-4a=0 注:方程有相等的两实根
b2-4ac>0 注:方程有两个不相等的个实根
b2-4ac<0 注:方程有共轭复数根
公式分类 公式表达式
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h
图形周长 面积 体积公式
长方形的周长=(长+宽)×2
正方形的周长=边长×4
长方形的面积=长×宽
正方形的面积=边长×边长
三角形的面积
已知三角形底a,高h,则S=ah/2
已知三角形三边a,b,c,半周长p,则S= √[p(p - a)(p - b)(p - c)] (海*式)(p=(a+b+c)/2)
和:(a+b+c)*(a+b-c)*1/4
已知三角形两边a,b,这两边夹角C,则S=absinC/2
设三角形三边分别为a、b、c,内切圆半径为r
则三角形面积=(a+b+c)r/2
设三角形三边分别为a、b、c,外接圆半径为r
则三角形面积=abc/4r
已知三角形三边a、b、c,则S= √{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶)
| a b 1 |
S△=1/2 * | c d 1 |
| e f 1 |
【| a b 1 |
| c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC
| e f 1 |
选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】
秦九韶三角形中线面积公式:
S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3
其中Ma,Mb,Mc为三角形的中线长.
平行四边形的面积=底×高
梯形的面积=(上底+下底)×高÷2
直径=半径×2 半径=直径÷2
圆的周长=圆周率×直径=
圆周率×半径×2
圆的面积=圆周率×半径×半径
长方体的表面积=
(长×宽+长×高+宽×高)×2
长方体的体积 =长×宽×高
正方体的表面积=棱长×棱长×6
正方体的体积=棱长×棱长×棱长
圆柱的侧面积=底面圆的周长×高
圆柱的表面积=上下底面面积+侧面积
圆柱的体积=底面积×高
圆锥的体积=底面积×高÷3
长方体(正方体、圆柱体)
的体积=底面积×高
平面图形
名称 符号 周长C和面积S
正方形 a—边长 C=4a
S=a2
长方形 a和b-边长 C=2(a+b)
S=ab
三角形 a,b,c-三边长
h-a边上的高
s-周长的一半
A,B,C-内角
其中s=(a+b+c)/2 S=ah/2
=ab/2?sinC
=[s(s-a)(s-b)(s-c)]1/2
=a2sinBsinC/(2sinA)
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等
24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(sss) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即s=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l×h
83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d
84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)
94 判定定理3 三边对应成比例,两三角形相似(sss)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
109定理 不在同一直线上的三点确定一个圆。
110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2 圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理 一条弧所对的圆周角等于它所对的圆心角的一半
117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径
119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
121①直线l和⊙o相交 d<r
②直线l和⊙o相切 d=r
③直线l和⊙o相离 d>r
122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理 圆的切线垂直于经过切点的半径
124推论1 经过圆心且垂直于切线的直线必经过切点
125推论2 经过切点且垂直于切线的直线必经过圆心
126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理 弦切角等于它所夹的弧对的圆周角
129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等
131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离 d>r+r ②两圆外切 d=r+r
③两圆相交 r-r<d<r+r(r>r)
④两圆内切 d=r-r(r>r) ⑤两圆内含d<r-r(r>r)
136定理 相交两圆的连心线垂直平分两圆的公共弦
137定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×180°/n
140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积sn=pnrn/2 p表示正n边形的周长
142正三角形面积√3a/4 a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144弧长计算公式:l=nπr/180
145扇形面积公式:s扇形=nπr2/360=lr/2
146内公切线长= d-(r-r) 外公切线长= d-(r+r)
147等腰三角形的两个底脚相等
148等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合
149如果一个三角形的两个角相等,那么这两个角所对的边也相等
150三条边都相等的三角形叫做等边三角形

要采纳啊。

热心网友 时间:2023-08-15 20:04

http://wenku.baidu.com/view/5279d9333968011ca300914f.html
免费的
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
纯种萨摩和不纯的萨摩的区别 不是纯种萨摩,长大成型后和纯种萨摩外表一样吗 学播音主持和配音哪个更赚钱,各有各的长处 学播音真的能改变声音吗,会让自己的普通话更加标准 学习播音和配音的作用,可以提升自信和气质 普通人学配音有没有用,有兴趣则有用 什么是永诚财产保险股份有限公司 win10电脑升级不了ie11win10怎么升级ie11 电脑硬件保修哪些电脑硬件保修包括什么 电脑固态硬盘质保几年一般的电脑保修时间是多久 在Word文档中输入复杂的数学公式,执行()命令。 三角函数题目 德国第一装甲师军歌 “如图”和“如图所示”有什么区别? 筷子插入一杯水发生折射是什么原理 泰克示波器3014为什么IP地址不能手动输入? 经常熬夜,黑眼圈要怎么弄? 长期玩手机,眼角有黑眼圈怎么办 谁知道《THE MASS》这首曲子的MV是出自哪部电影? the mass歌词大意 15 常年玩手机, 常熬夜,有很重的黑眼圈,怎么办 总结信号抽样时需注意的问题,及使用那些方法进行信号的重建。 经常熬夜出现黑眼圈怎么办? 理想滤波器为什么不能实现? nuke里还有类似oflw的节点 吗 天天熬夜玩手机,有黑眼圈怎么办? 如何通过在抽样点之间内插恢复原连续时间信号 matlab如何实现stolt插值 每天玩手机很晚,黑眼圈越来越重怎么办? 图像预处理的几何变换 笔记本键盘进水按键失灵了,怎么办? 笔记本进水之后鼠标键盘均失灵该如何维修 电脑进水后键盘失灵怎么办 笔记本电脑键盘不小心进水第二天没反应该怎么办。 笔记本进水之后,键盘不能使用了,最有可能是那里坏了? 11◆技术求助◆光影精灵键盘失灵怎么破 笔记本键盘进水失灵了,小编自有妙招 笔记本键盘失灵的原因和处理方法 笔记本电脑的键盘弄了点水怎么办? 哔哩哔哩出差怎么看 移动亲情卡为什么查不到行程码? 怎样清除sd卡内存空间 怎么清理sd卡存储空间 为什么有的手机号码查不到行程码? 怎么清理手机SD卡的储存空间啊 移动卡突然查询不到行程码,怎么找行程码 怎样用电脑删除SD卡存储内容? 移动号码为什么查询不到行程? 国内能做非晶带材的企业有哪些?能给个详细的清单吗? 安泰科技的投资亮点