问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

不等式证明都有哪几种方法

发布网友 发布时间:2022-04-22 19:57

我来回答

4个回答

懂视网 时间:2022-08-14 23:19

1、【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们拼成两个正方形.,这两个正方形的边长都是a + b,所以面积相等. 即a2+b2+4x1/2ab=c2+4x1/2ab, 整理得a2+b2=c2。

2、【证法2】(1876年美国总统Garfield证明)以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角1ab形的面积等于2. 把这两个直角三角形拼成适合的形状,使A、E、B三点在一条直线上. ∵ RtΔEAD ≌ RtΔCBE,∴ ∠ADE = ∠BEC. ∵ ∠AED + ∠ADE = 90o, ∴ ∠AED + ∠BEC = 90o.∴ ∠DEC = 180o―90o= 90o. ∴ ΔDEC是一个等腰直角三角形, 12c2它的面积等于.又∵ ∠DAE = 90o, ∠EBC = 90o,∴ AD∥BC.∴ ABCD是一个直角梯形,它的面积等于1/2(a+b)2.∴1/2(a+b)2=2x1/2ab+1/2c2∴ a2+b2=c2。

3、【证法3】(利用切割线定理证明)在 RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 以B为圆心a为半径作圆,交AB及AB的延长线分别于D、E,则BD = BE = BC = a. 因为∠BCA = 90o,点C在⊙B上,所以AC是⊙B 的切线. 由切割线定理,得AC2=AExAD=(AB+BE)(AB-BD) =(c+a)(c-a)= c2-a2,即b2=c2-a2,∴ a2+b2=c2。

热心网友 时间:2023-01-28 17:56

比较法
比较法是证明不等式的最基本方法,具体有"作差"比较和"作商"比较两种。基本思想是把难于比较的式子变成其差与0比较大小或其商与1比较大小。当求证的不等式两端是分项式(或分式)时,常用作差比较,当求证的不等式两端是乘积形式(或幂指数式时常用作商比较)
例1已知a+b≥0,求证:a3+b3≥a2b+ab2
分析:由题目观察知用"作差"比较,然后提取公因式,结合a+b≥0来说明作差后的正或负,从而达到证明不等式的目的,步骤是10作差20变形整理30判断差式的正负。
∵(a3+b3)(a2b+ab2)
=a2(a-b)-b2(a-b)
=(a-b)(a2-b2)
证明: =(a-b)2(a+b)
又∵(a-b)2≥0a+b≥0
∴(a-b)2(a+b)≥0
即a3+b3≥a2b+ab2
例2 设a、b∈R+,且a≠b,求证:aabb>abba
分析:由求证的不等式可知,a、b具有轮换对称性,因此可在设a>b>0的前提下用作商比较法,作商后同"1"比较大小,从而达到证明目的,步骤是:10作商20商形整理30判断为与1的大小
证明:由a、b的对称性,不妨解a>b>0则
aabbabba=aa-bbb-a=(ab)a-b
∵ab0,∴ab1,a-b0
∴(ab)a-b(ab)0=1即aabbabba>1,又abba>0∴aabb>abba
练习1 已知a、b∈R+,n∈N,求证(a+b)(an+bn)≤2(an+1+bn+1)

基本不等式法
利用基本不等式及其变式证明不等式是常用的方法,常用的基本不等式及 变形有:
(1)若a、b∈R,则a2+b2≥2ab(当且仅当a=b时,取等号)
(2)若a、b∈R+,则a+b≥ 2ab (当且仅当a=b时,取等号)
(3)若a、b同号,则 ba+ab≥2(当且仅当a=b时,取等号)
例3 若a、b∈R, |a|≤1,|b|≤1则a1-b2+b1-a2≤1
分析:通过观察可直接套用: xy≤x2+y22
证明: ∵a1-b2b1-a2≤a2+(1-b2)2+b2-(1-a2)2=1
∴b1-a2+a1-b2≤1,当且仅当a1+b2=1时,等号成立
练习2:若 ab0,证明a+1(a-b)b≥3

综合法
综合法就是从已知或已证明过的不等式出发,根据不等式性质推算出要证明不等式。
例4,设 a0,b0,a+b=1,证明:(a+1a)2+(B+1b)2≥252
证明:∵ a0,b0,a+b=1
∴ab≤14或1ab≥4
左边=4+(a2+b2)=1a2+1b2=4+[(a+b)2-2ab]+(a+b)2-2aba2b2
=4+(1-2ab)+1-2aba2b2≥4+(1-12)+8=252
练习3:已知a、b、c为正数,n是正整数,且f (n)=1gan+bn+cn3
求证:2f(n)≤f(2n)

分析法
从理论入手,寻找命题成立的充分条件,一直到这个条件是可以证明或已经证明的不等式时,便可推出原不等式成立,这种方法称为分析法。
例5:已知a0,b0,2ca+b,求证:c-c2-ab<a<c+c2-ab
分析:观察求证式为一个连锁不等式,不易用比较法,又据观察求证式等价于 |a-c|<c2-ab也不适用基本不等式法,用分析法较合适。
要证c-c2-ab<a<c+c2-ab
只需证-c2-ab<a-c<c2-ab
证明: 即证 |a-c|<c2-ab
即证 (a-c)2<c2-ab
即证 a2-2ac<-ab
∵a>0,∴即要证 a-2c<-b 即需证2+b<2c,即为已知
∴ 不等式成立
练习4:已知a∈R且a≠1,求证:3(1+a2+a4)>(1+a+a2)2
放缩法
放缩法是在证明不等式时,把不等式的一边适当放大或缩小,利用不等式的传递性来证明不等式,是证明不等式的重要方法,技巧性较强常用技巧有:(1)舍去一些正项(或负项),(2)在和或积中换大(或换小)某些项,(3)扩大(或缩小)分式的分子(或分母)等。
例6:已知a、b、c、d都是正数
求证: 1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<2
分析:观察式子特点,若将4个分式商为同分母,问题可解决,要商同分母除通分外,还可用放缩法,但通分太麻烦,故用放编法。
证明:∵ba+b+c+cb+c+d+dc+d+a+ad+a+b>ba+b+c+d+ca+b+c+d+da+b+c+d+aa+b+c+d=a+b+c+da+b+c+d=1
又由ab<a+mb+m(0<a<b,m>0)可得:ba+b+c<b+da+b+c+dcb+c+d<c+aa+b+c+ddc+d+a<d+bc+d+a+dad+a+b<a+ca+b+c+d
∴ ba+b+c+cb+c+d+dc+d+a+ad+a+b<b+da+b+c+d+c+aa+b+c+d+d+bc+d+a+d+a+ca+b+c+d=2(a+b+c+c)a+b+c+d=2
综上知:1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<2
练习5:已知:a<2,求证:loga(a+1)<1
6换元法
换元法是许多实际问题解决中可以起到化难为易,化繁为简的作用,有些问题直接证明较为困难,若通过换元的思想与方法去解就很方便,常用于条件不等式的证明,常见的是三角换元。
(1)三角换元:
是一种常用的换元方法,在解代数问题时,使用适当的三角函数进行换元,把代数问题转化成三角问题,充分利用三角函数的性质去解决问题。
例7、若x、y∈R+,且 x-y=1 A=(x-1y)(y+1y)。1x,求证0<A<1
证明: ∵x,y∈R+, 且x-y=1,x=secθ , y=tanθ ,(0<θ<xy )
∴ A=(secθ-1secθ(tanθ+1tanθ·1sec2θ
=1-cos2θcosθ·s2m2θ+cos2θcosθ·s2mθ·cos2θ
=sinθ
∵0<θ<x2,∴ 0<s2mθ <1因此0<A<1
复习6:已知1≤x2+y2≤2,求证:12 ≤x2-xy+y2≤3
(2)比值换元:
对于在已知条件中含有若干个等比式的问题,往往可先设一个辅助未知数表示这个比值,然后代入求证式,即可。
例8:已知 x-1=y+12=z-23,求证:x2+y2+z2≥4314
证明:设x-1=y+12=z-23=k
于是x=k+1,y=zk-1,z=3k+2
把上式代入x2+y2+z2=(k+1)2(2k-1)2+(3k+2)2
=14(k+514)2+4314≥4314

反证法
有些不等式从正面证如果不好说清楚,可以考虑反证法,即先否定结论不成立,然后依据已知条件以及有关的定义、定理、公理,逐步推导出与定义、定理、公理或已知条件等相矛盾或自相矛盾的结论,从而肯定原有结论是正确的,凡是"至少"、"唯一"或含有否定词的命题,适宜用反证法。
例9:已知p3+q3=2,求证:p+q≤2
分析:本题已知为p、q的三次 ,而结论中只有一次 ,应考虑到用术立方根,同时用放缩法,很难得证,故考虑用反证法。
证明:解设p+q>2,那么p>2-q
∴p3>(2-q)3=8-12q+6q2-q3
将p3+q3 =2,代入得 6q2-12q+6<0
即6(q-1)2<0 由此得出矛盾 ∴p+q≤2
练习7:已知a+b+c>0,ab+bc+ac>0,abc>0.
求证:a>0,b>0,c>0
数学归纳法
与自然数n有关的不等式,通常考虑用数学归纳法来证明。用数学归纳法证题时的两个步骤缺一不可。
例10:设n∈N,且n>1,求证: (1+13)(1+15)…(1+12n-1)>2n+12
分析:观察求证式与n有关,可采用数学归纳法
证明:(1)当n=2时,左= 43,右=52
∵43>52∴不等式成立
(2)假设n=k(k≥2,k∈n)时不等式成立,即(1+13)(1+15)…(1+12k-1)>2k+12
那么当n=k+1时,(1+13)(1+15)…(1+12k-1)(1+12k+1)>2k+12·(1+12k+1)①
要证①式左边> 2k+32,只要证2k+12·
2k+22k+1>2k+32②
对于②〈二〉2k+2> 2k+1·2k+3
〈二〉(2k+2)2> (2k+1)(2k+3)
〈二〉4k2+8k+4> 4k2+8k+3
〈二〉4>3 ③
∵③成立 ∴②成立,即当n=k+1时,原不等式成立
由(1)(2)证明可知,对一切n≥2(n∈N),原不等式成立
练习8:已知n∈N,且n>1,求证: 1n+1+1n+2+…+12n> 1324

构造法
根据求证不等式的具体结构所证,通过构造函数、数列、合数和图形等,达到证明的目的,这种方法则叫构造法。
1构造函数法
例11:证明不等式:x1-2x <x2 (x≠0)
证明:设f(x)= x1-2x- x2 (x≠0)
∵f (-x)
=-x1-2-x+x2x-2x2x-1+x2
=x1-2x- [1-(1-2x)]+x2=x1-2x-x+x2
=f(x)
∴f(x)的图像表示y轴对称
∵当x>0时,1-2x<0 ,故f(x)<0
∴当x<0时,据图像的对称性知f(x)<0
∴当x≠0时,恒有f(x)<0 即x1-2x<x2(x≠0)
练习9:已知a>b,2b>a+c,求证:b- b2-ab<a<b+b2-ab
2构造图形法
例12:若f(x)=1+x2 ,a≠b,则|f(x)-f(b)|< |a-b|
分析:由1+x2 的结构可知这是直角坐标平面上两点A(1,x),0(0,0)的距离即 1+x2 =(1-0)2+(x-0)2
于设A(1,a),B(1,b)则0A= 1+a2

热心网友 时间:2023-01-28 19:14

不等式的证明方法
(1)比较法:作差比较: .
作差比较的步骤:
①作差:对要比较大小的两个数(或式)作差.
②变形:对差进行因式分解或配方成几个数(或式)的完全平方和.
③判断差的符号:结合变形的结果及题设条件判断差的符号.
注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小.
(2)综合法:由因导果.
(3)分析法:执果索因.基本步骤:要证……只需证……,只需证……
①“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件.
②“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可以利用分析法寻找证题的途径,然后用“综合法”进行表达.
(4)反证法:正难则反.
(5)放缩法:将不等式一侧适当的放大或缩小以达证题目的.
放缩法的方法有:
①添加或舍去一些项,如: ; ;
②将分子或分母放大(或缩小);
③利用基本不等式,如: ;;
(6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元.
如:已知 ,可设 ;
已知 ,可设 ( );
已知 ,可设 ;
已知 ,可设 ;
(7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;
证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.
⑻数学归纳法法:数学归纳法法证明不等式在数学归纳法中专门研究.

热心网友 时间:2023-01-28 20:49

g3.1039 不等式证明方法(二)
一、知识回顾
1、反证法:从否定结论出发,经过逻辑推理,导出矛盾,从而肯定原结论的正确;
2、放缩法:欲证 ,可通过适当放大或缩小,借助一个或多个中间量使得 (或 ),常用的放缩方式:
舍去或加上一些项;
; ;
3、换元法:三角换元、代数换元;
4、判别式法
二、基本训练:
1、实数 、 、 不全为零的条件为( )
、 、 全不为零 、 、 中至多只有一个为零
、 、 只有一个为零 、 、 中至少有一个不为零
2、已知 , ,则有( )

3、为已知 ,则 的取值范围是 。
4、设 , ,则 、 大小关系为 。
5、 实数 ,则 的取值范围是 。
三、例题分析:
例1、x>0,y>0,求证:

例2、函数 ,求证:

例3、 (三角换元法)

例4、求证: (判别式法)

例5、若a,b,c都是小于1的正数,求证: .
(反证法)

例6、求证: (放缩法)

例7、设二次函数 ,若函数 的图象与直线 和 均无公共点。
(1) 求证:
(2) 求证:对于一切实数 恒有

四、课堂小结:
1、凡是“至少”、“唯一”或含有否定词的命题适宜用反证法.
2、换元法(主要指三角代换法)多用于条件不等式的证明,此法若运用恰当,可沟通三角与代数的联系,将复杂的代数问题转化成简单的三角问题.
3、含有两上字母的不等式,若可化成一边为零,而另一边是关于某字母的二次式时,这时可考虑判别式法,并注意根的取值范围和题目的*条件.
4、有些不等式若恰当地运用放缩法可以很快得证,放缩时要看准目标,做到有的放矢,注意放缩适度.

五、同步练习g3.1039 不等式证明方法(二)

1、若 且 ,则 的取值范围是( )

2、已知 ,则下列各式中成立的是( )

3、设,y∈R,且x +y =4,则 的最大值为( )
A) 2- B)2+2 C) -2 D)
4、若f(n)= -n,g(n)=n- ,φ(n)= ,则f(n),g(n),ф(n)的大小顺序为____________.
5、设a,b是两个实数,给出下列条件:①a+b>1; ②a+b=2;③a+b>2;④a +b >2;⑤ab>1,其中能推出:“a、b中至少有一个实数大于1”的条件是____________.
6、a、b、c∈R-,a≠b,求证:

7、a>b>c,求证:
(提示:换元法,令a-b=m∈R+,b-c=n∈R+)

8、若 ,求证:

9、已知 ,求证: 中至少有一个不少于 。

10、已知 、 、 是整数且 ,试证明:
(1) ;
(2) .

答案:DCB 4、g(n)>ф(n)> f(n) 5、③

热心网友 时间:2023-01-28 22:40

最基本的就是作差比较,另外还有作商的。
此外还有用数学归纳法(如琴生不等式的一般形式)
放缩法,调整法(如的排序不等式),还有就是直接代公式。
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
为什么来大姨妈胸会胀 少儿学什么舞蹈 青年学什么舞蹈好 成年人学什么舞蹈 福州企业最低工资标准 2013年厦门的底薪是多少 生产要素的需求有哪些性质 生产要素的需求有何特点? 什么是生产要素需求 微观经济学要素需求什么是条件要素需求?它和要素需求有什么不同?_百度... 基本不等式满足什么条件才能连续放缩拜托各位了 3Q 什么是不等式的伸缩性?这是做什么用的? 不等式放缩法经典例题,有吗? 不等式与放缩法 数学放缩不等式是什么?怎么用? 求高考放缩法总结性常用公式。 求一些不等式证明中常用放缩的结论 基本不等式放缩法怎么用? 数列不等式放缩技巧 数学不等式问题(放缩法) 导数放缩法常用不等式有哪些? 大学几个重要的放缩公式? 高中放缩法常用的不等式有哪些? 放缩常用不等式 不等式 放缩法 常用的公式 常见数列的不等式的放缩方法谁知道? 八个放缩公式 不等式放缩公式 同学聚会.谁帮帮我 形容五十年代老同学聚会三句半的词语有哪些? “不等式放缩”的英文怎么说? vivo手机的短信中心号码是什么? vivox3怎么设置短信中心号码 vivox5pro的短信中心号码怎么样设置 vivox3l的中心号码怎么设置 为什么有的群不经过我同意就把我拉进群了呢 怎么找到以前的qq聊天记录 怎么才能恢复qq以前的消息记录 WIN10电脑耳机插上声音还是外放 戴尔win10笔记本插耳机还外放 华硕笔记本win10插了耳机还是声音外放 戴尔win10耳机插上电脑仍然外放 win10系统插了耳机声音还是外放音怎么办 win10电脑插上耳机还是外放 为什么改hosts文件还是上不了 已经改好了hosts但是还是连不上,求 404 Not Found 修改hosts文件,网页打不开? 手机修改hosts屏蔽了一些网站,其他浏览器都登不上去唯有qq浏览器能登的上去 为什么? 为什么修改了hosts文件不管用