问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

关于二次函数 高手赐教

发布网友 发布时间:2022-04-22 20:47

我来回答

4个回答

热心网友 时间:2022-04-27 18:56

一般地,自变量x和因变量y之间存在如下关系:
y=ax^2+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
x是自变量,y是x的函数
[编辑本段]二次函数的三种表达式
①一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
②顶点式[抛物线的顶点 P(h,k) ]:y=a(x-h)^2+k
③交点式[仅限于与x轴有交点 A(x1,0) 和 B(x2,0) 的抛物线]:y=a(x-x1)(x-x2)
以上3种形式可进行如下转化:
①一般式和顶点式的关系
对于二次函数y=ax^2+bx+c,其顶点坐标为(-b/2a,(4ac-b^2)/4a),即
h=-b/2a=(x1+x2)/2
k=(4ac-b^2)/4a
②一般式和交点式的关系
x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式)
[编辑本段]二次函数的图像
在平面直角坐标系中作出二次函数y=x^2的图像,
可以看出,二次函数的图像是一条永无止境的抛物线。
[编辑本段]抛物线的性质
1.抛物线是轴对称图形。对称轴为直线x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )
当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
_______
Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)
当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b^2/4a;在{x|x<-b/2a}上是减函数,在{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变
当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)
7.定义域:R
值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)
奇偶性:偶函数
周期性:无
解析式:
①y=ax^2+bx+c[一般式]
⑴a≠0
⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
⑶极值点:(-b/2a,(4ac-b^2)/4a);
⑷Δ=b^2-4ac,
Δ>0,图象与x轴交于两点:
([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);
Δ=0,图象与x轴交于一点:
(-b/2a,0);
Δ<0,图象与x轴无交点;
②y=a(x-h)^2+t[配方式]
此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);
[编辑本段]二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
解析式
y=ax^2
y=a(x-h)^2
y=a(x-h)^2+k
y=ax^2+bx+c
顶点坐标
(0,0)
(h,0)
(h,k)
(-b/2a,sqrt[4ac-b^2]/4a)
对 称 轴
x=0
x=h
x=h
x=-b/2a

当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,
当h<0时,则向左平行移动|h|个单位得到.
当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;
当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;
当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).
3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.
4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b^2-4ac>0,图象与x轴交于两点A(x₁,0)和B(x₂,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的两根.这两点间的距离AB=|x₂-x₁| 另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-A |(A为其中一点的横坐标)
当△=0.图象与x轴只有一个交点;
当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.
5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
y=ax^2+bx+c(a≠0).
(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x₂)(a≠0).
7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.
[编辑本段]中考典例
1.(北京西城区)抛物线y=x^2-2x+1的对称轴是( )
(A)直线x=1 (B)直线x=-1 (C)直线x=2 (D)直线x=-2
考点:二次函数y=ax2+bx+c的对称轴.
评析:因为抛物线y=ax2+bx+c的对称轴方程是:y=-2a/b,将已知抛物线中的a=1,b=-2代入,求得x=1,故选项A正确.
另一种方法:可将抛物线配方为y=a(x-h)2+k的形式,对称轴为x=h,已知抛物线可配方为y=(x-1)^2,所以对称轴x=1,应选A.
2.( 北京东城区)有一个二次函数的图象,三位学生分别说出了它的一些特点:
甲:对称轴是直线x=4;
乙:与x轴两个交点的横坐标都是整数;
丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.
请你写出满足上述全部特点的一个二次函数解析式: .
考点:二次函数y=ax2+bx+c的求法
评析:设所求解析式为y=a(x-x1)(x-x2),且设x1<x2,则其图象与x轴两交点分别是A(x1,0),B(x2,0),与y轴交点坐标是(0,ax1x2).
∵抛物线对称轴是直线x=4,
∴x2-4=4 - x1即:x1+ x2=8 ①
∵S△ABC=3,∴(x2- x1)·|a x1 x2|= 3,
即:x2- x1= ②
①②两式相加减,可得:x2=4+,x1=4-
∵x1,x2是整数,ax1x2也是整数,∴ax1x2是3的约数,共可取值为:±1,±3。
当ax1x2=±1时,x2=7,x1=1,a=±
当ax1x2=±3时,x2=5,x1=3,a=±
因此,所求解析式为:y=±(x-7)(x-1)或y=±(x-5)(x-3)
即:y=x2-x+1 或y=-x2+x-1 或y=x2-x+3 或y=-x2+x-3
说明:本题中,只要填出一个解析式即可,也可用猜测验证法。例如:猜测与x轴交点为A(5,0),B(3,0)。再由题设条件求出a,看C是否整数。若是,则猜测得以验证,填上即可。
5.( 河北省)如图13-28所示,二次函数y=x2-4x+3的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为( )
A、6 B、4 C、3 D、1
考点:二次函数y=ax2+bx+c的图象及性质的运用。
评析:由函数图象可知C点坐标为(0,3),再由x2-4x+3=0可得x1=1,x2=3所以A、B两点之间的距离为2。那么△ABC的面积为3,故应选C。
图13-28
6.( 安徽省)心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系:y=-0.1x2+2.6x+43(0<x<30)。y值越大,表示接受能力越强。
(1)x在什么范围内,学生的接受能力逐步增强?x在什么范围内,学生的接受能力逐步降低?
(2)第10分时,学生的接受能力是什么?
(3)第几分时,学生的接受能力最强?
考点:二次函数y=ax2+bx+c的性质。
评析:将抛物线y=-0.1x2+2.6x+43变为顶点式为:y=-0.1(x-13)2+59.9,根据抛物线的性质可知开口向下,当x<13时,y随x的增大而增大,当x>13时,y随x的增大而减小。而该函数自变量的范围为:0<x3<0,所以两个范围应为0<x<13;13<x<30。将x=10代入,求函数值即可。由顶点解析式可知在第13分钟时接受能力为最强。解题过程如下:
解:(1)y=-0.1x2+2.6x+43=-0.1(x-13)2+59.9
所以,当0<x<13时,学生的接受能力逐步增强。
当13<x<30时,学生的接受能力逐步下降。
(2)当x=10时,y=-0.1(10-13)2+59.9=59。
第10分时,学生的接受能力为59。
(3)x=13时,y取得最大值,
所以,在第13分时,学生的接受能力最强。
9.( 河北省)某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:
(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;
(2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式(不必写出x的取值范围);
(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
解:(1)当销售单价定为每千克55元时,月销售量为:500–(55–50)×10=450(千克),所以月销售利润为
:(55–40)×450=6750(元).
(2)当销售单价定为每千克x元时,月销售量为:[500–(x–50)×10]千克而每千克的销售利润是:(x–40)元,所以月销售利润为:
y=(x–40)[500–(x–50)×10]=(x–40)(1000–10x)=–10x2+1400x–40000(元),
∴y与x的函数解析式为:y =–10x2+1400x–40000.
(3)要使月销售利润达到8000元,即y=8000,∴–10x2+1400x–40000=8000,
即:x2–140x+4800=0,
解得:x1=60,x2=80.
当销售单价定为每千克60元时,月销售量为:500–(60–50)×10=400(千克),月销售成本为:
40×400=16000(元);
当销售单价定为每千克80元时,月销售量为:500–(80–50)×10=200(千克),月销售单价成本为:
40×200=8000(元);
由于8000<10000<16000,而月销售成本不能超过10000元,所以销售单价应定为每千克80元.

热心网友 时间:2022-04-27 20:14

主要是要多花时间背一下必要的公式,然后再多做一些二次函数的题就可以了,刻意的总结这些规律性的知识作用并不大,我初中的时候也是二次函数学得不好,每次数学都考一百一十多分的我在函数上栽了,居然不及格!!后来也总结过规律但作用并不大,后来就多背背公式,多做些题,成绩自然就好啦~
另外,做题时要注意多结合图像,这样也有助于你理解题目并加深对二次函数的理解。
中考中,二次函数所考的比例并不是很大,出现在选填题中的有关二次函数的问题都很简单、很基础,一般说来都能把分拿到,难题出在最后一道大题,一般说来,能拿到分得并不多,所以不用花过多精力在它上面……
最后,希望你能通过自己努力取得进步,在中考中发挥水平,考取自己理想的学校!!

热心网友 时间:2022-04-27 21:49

二次函数啊简单 呼呼 记住顶点坐标公式(b/-2a,4ac-b平方/4a) 算解析式的话如果给你三个很一般的坐标 就用一般式y=ax平方+bx+c带入求 如果给你了顶点坐标和随便另一个坐标就用顶点式y=(x-h)平方+k带入算其中h代表顶点横坐标 k代表纵坐标 然后再带入另一个点就能算了 如果给你了与x轴的两交点和其他任意点就用交点式y=a(x-x1)(x-x2)带入算 x1 x2都是与x轴交点横坐标
然后a大于0时 抛物线开口向上 小于0 开口向下 IaI越大开口就越小,IaI越小开口就越大 c决定于y轴交点 还有如果对称轴在y轴左侧 ab同号 若在y轴右侧 ab异号 如果b平方-4ac大于0 则该图像与x轴有两交点 若=0 则有一个 小于0没有 然后``````````````````````````````
然后基本就没什么了吧 解析式求出来剩下就好办 就这吧 呵呵 加油 我也快中招了 一起努力啊 fighting```````

热心网友 时间:2022-04-27 23:40

一般地,自变量x和因变量y之间存在如下关系:
y=ax^2+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
x是自变量,y是x的函数
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
正宗柳州螺丝粉汤料制作及秘制香料配方 “天性”是什么?什么是“天性” 天性和生性的区别是什么 天性什么意思 下面的立体图形从前面、上面、左面看到的形状分别是什么?画一画。 ...小正方体的位置,使移动后的立体图形从前面看到的形状与原来的相_百... ...小正方体木块搭成的立体图形,从前面看到的图形是,从上面看到的图形也... 一个用小正方体搭成的立体图形,从前面看到的是图形①(如图),从上面看到... ...鬼妈妈》《僵尸新娘》《怪兽屋》《圣诞夜惊魂》的电影或者动画。介... 有没有像《僵尸新娘》《圣诞夜惊魂》《鬼妈妈》《魔怪屋》之类的动画... 初中数学二次函数如何快速入门? 关于二次函数的一般式的基础知识? 第一次没有吃完的剩菜放入冰箱中,最多能隔上几天后还能食用? 一次函数和二次函数有什么区别,具体怎么区分 吃自助餐时如果还没有吃完,刀叉应如何摆放? 煮熟的螃蟹没有吃完怎样存放,过一天再吃怎么吃 二次函数入门,请大神稍微讲解一下 家里的月饼没有吃完,一般能够放多久不会坏? 学习二次函数需要哪些基础? 大闸蟹应该没有吃完怎么办呢 初中函数入门基础知识有哪些? 狗狗今天吃饭不积极,而且没有吃完怎么回事 二次函数的详细讲解??? 头一天没有吃完的青菜,第二天还能吃吗? 今天她突然说我给她买的东西还没有吃完 什么意思? 家中煮的鱼当天没有吃完,第二天吃的话会不会有危害呢? 请问当天没有吃完的菜放冰箱里,第二天还能不能吃,对身体有没有危害? 必胜客披萨没有吃完可以打包吗 老人说客人没有吃完饭就收碗了会怎样? 没有吃完的干锅牛肉头天晚上没有吃完,放第二天能吃吗? 二次函数基础点问题解答 二次函数(零基础) 二次函数入门 求解:详细的答案和方法 请教数学高手 初中二次函数(入门) 北京光大时代科技有限公司怎么样? 重庆光大时代乳业有限公司怎么样? 肇庆市光大时代工馆项目拖贝农民工工资,如何讨薪? 光大时代城怎么样?好不好?值不值得买? 《光荣时代》为什么陷入神剧的泥沼? 光荣时代这部剧怎么样?好看么? 光荣时代结局什么意思 《光荣时代》演员有哪些? 光大时代城交通方便吗?应该怎么过去? 如何评价电视剧《光荣时代》? 光荣时代多爷结局怎么样了 光荣时代中,郑朝山是什么身份? 肇庆市光大时代公馆项目下林旺劳务公司拖欠农民工工资如何能讨薪? 光荣时代候鸟是谁? 什么是量子时代 请教古寺、禅寺、律寺、讲寺和教寺有什么区别?